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Abstract

An effective decoherence method called the fourth-order cumulants-based improved Toeplitz matrices reconstruction
(FOC-ITMR) is addressed for two-dimensional (2-D) direction-of-arrival (DOA) estimation of coherent signals. To avoid
the loss of the array’s physical aperture, the FOC-ITMR method fully utilizes the information of received data from the
whole two parallel uniform linear arrays (ULAs) and the changing reference element based on FOC. Compared with
previous works, the proposed method can offer excellent decoherence performance in both white noise and color
noise environments. In addition, the proposed algorithm can achieve automatic pair-matching without additional
computation. The theoretical analysis and simulation results confirm the effectiveness of the proposed algorithm.
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1 Introduction
Direction-of-arrival (DOA) estimation is a major research
issue in array signal-processing applications such as radar,
wireless communication, and sonar [1–5]. Among different
DOA estimation methods, 2-D DOA estimation of coherent
source signals [6–10] has drawn increasing attentions. Con-
ventional high-precision methods, such as MUSIC [11] and
ESPRIT [12], have achieved exciting performance. Unfortu-
nately, these algorithms are easy to affect by noise as well as
require its prior knowledge. Besides, the total number of inci-
dent signals must be less than that of the sensors [13]. Fortu-
nately, the high-order cumulants, such as the fourth-order
cumulants (FOC), have been shown to be a promising method
since the noise covariance, which is Gaussian distributed, can
be ignored [14–16]. Furthermore, another key motivation of
using the FOC is the ability to resolve more number of
sources than or equal to that of array elements [17, 18].
In practical, highly correlated or coherent signals are every-

where in multipath propagation environments due to reflec-
tion and refraction of source signals. Based on such scenario,
the coherent sources facilitate the rank loss of the covariance
matrix, which could result in the failure of the conventional
high-resolution algorithms. To achieve signal decorrelation,

the spatial smoothing (SS) [19] and forward-backward spatial
smoothing (FBSS) [20] are especially noteworthy, which
achieve coherent sources location. Chen et al. [21] have pro-
posed a 2-D ESPRIT-like algorithm to attain decorrelation.
Based on three correlation matrices, Wang et al. [22] have
presented a 2-D DOA estimation method. Recently, Nie et al.
[23] have introduced a computationally efficient subspace
method with L-shaped array. In [24], an effective 2-D
DOA estimation method using a sparse L-shaped array is
proposed to obtain good estimation performance and less
computational complexity. In [25], the FOC-FSS approach
has been presented to remedy rank deficiency problem. In
[26], the FOC-TMR method is presented to obtain source
location by reconstructing two Toeplitz matrices.
In this paper, a new Toeplitz matrices reconstruction al-

gorithm, called the FOC-ITMR, is proposed for 2-D coher-
ent signals DOA estimation. The information of the whole
two subarrays elements is fully utilized to reconstruct two
new matrices by changing the reference element, which can
achieve the decorrelation of the coherent signals as well as
avoid the loss of array aperture.

2 Signal model
As illustrated in Fig. 1, the antenna array consists of two
parallel ULAs (Xa and Ya) in the x − y plane. Each ULA has
N identical omni-directional sensors with spacing dx, and
the interelement spacing between the two ULAs is dy.
Suppose that P far-field narrowband source signals

si(t) (i = 1,…,P) impinge on the two parallel ULAs from
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directions (θi, βi), where θi and βi are measured relatively
to the x and y axes corresponding to the ith signal, re-
spectively. Thus, ψi, the DOA of the ith signal relative to
the z axis, can be written by

cos2θi þ cos2βi þ cos2ψi ¼ 1 ð1Þ
Here, χi= (θi, βi, ψi) are termed as 2-D DOA vector angles.
Let the mth element of the subarray Xa be the phase

reference, and then the observed signals xmk tð Þ at the kth
element in time t can be expressed as

xmk tð Þ ¼
XQ
i¼1

γ is1 tð Þe−j
2π
λ
dx k−mð Þ cosθi

þ
XP

i¼Qþ1

si tð Þe−j
2π
λ
dx k−mð Þ cosθi þ nx;k tð Þ

ð2Þ
where the superscript m(m = 1, 2,⋯,N) of the xmk tð Þ
stands for the number of the reference element in subar-
ray Xa, and the subscript k(k = 1, 2,⋯,N) of the xmk tð Þ
denotes the number of the element along the x positive
axis in subarray Xa. nx,k(t) is the additive Gaussian noise
of the kth element in subarray Xa and γi indicates the
amplitude fading factor of the first Q correlative signals
(without loss of generality, we assume γ1 = 1).
With a similar processing, employing the mth element of

the subarray Ya as the phase reference, and then the observed
signals ymk tð Þ at the kth element in time t can be expressed as

ymk tð Þ ¼
XQ
i¼1

γ is1 tð Þe−j
2π
λ
dx k−mð Þ cosθi ej

2π
λ
dy cosβi

þ
XP

i¼Qþ1

si tð Þe
−j
2π
λ
dx k−mð Þ cosθi

e
j
2π
λ
dy cosβi þ ny;k tð Þ

ð3Þ
The observed vectors Xm(t) and Ym(t) can be written as

Xm tð Þ ¼ xm1 tð Þ; xm2 tð Þ;⋯; xmN tð Þ� �T ð4Þ

Ym tð Þ ¼ ym1 tð Þ; ym2 tð Þ;⋯; ymN tð Þ� �T ð5Þ

3 Angle estimation algorithm
3.1 The FOC-ITMR algorithm
The new proposed algorithm named as FOC-ITMR,
which is based on reconstructing two Toeplitz matrices
C1 and C2 by using two parallel ULAs, is described in
detail in this subsection. Firstly, we define C1 and C2

with the cumulant elements cmk and ~cmk arranging as
follows

cmk ¼ cum xmm tð Þ; xmm tð Þ� ��
; xmm tð Þ� ��

; xmk tð Þ� �

¼ cum

�XQ
i¼1

γ is1 tð Þ þ
XP
i¼Qþ1

si tð Þ þ nx;0 tð Þ;
XQ
i¼1

γ�i s
�
1 tð Þ

þ
XP

i¼Qþ1

s�i tð Þ þ nx;0

�
tð Þ;
XQ
i¼1

γ�i s
�
1 tð Þ þ

XP
i¼Qþ1

s�i tð Þ

þnx;0� tð Þ;
XQ
i¼1

γ is1 tð Þe−j
2π
λ
dx k−mð Þ cosθi

þ
XP

i¼Qþ1

si tð Þe−j
2π
λ
dx k−mð Þ cosθi þ nx;k tð Þ�

¼
XQ
i¼1

γ�i

 !2 XQ
i¼1

γ i

 !XQ
i¼1

γ ie
−j
2π
λ
dx k−1ð Þ− m−1ð Þ½ � cosθi

cum s1 tð Þ; s�1 tð Þ; s�1 tð Þ; s1 tð Þ� �þ XP
i¼Qþ1

e
−j
2π
λ
dx k−1ð Þ− m−1ð Þ½ � cosθi

cum si tð Þ; s�i tð Þ; s�i tð Þ; si tð Þ� � ¼XP
i¼1

die
−j
2π
λ
dx k−1ð Þ− m−1ð Þ½ � cosθi

ð6Þ

~cmk ¼ cum xmm tð Þ; xmm tð Þ� ��
; xmm tð Þ� ��

; ymk tð Þ� �

¼ cum

�XQ
i¼1

γ is1 tð Þ þ
XP
i¼Qþ1

si tð Þ þ nx;0 tð Þ;
XQ
i¼1

γ�i s
�
1 tð Þ þ

XP
i¼Qþ1

s�i tð Þ þ n�x;0 tð Þ;

XQ
i¼1

γ�i s
�
1 tð Þ þ

XP
i¼Qþ1

s�i tð Þ þ n�x;0 tð Þ;
XQ
i¼1

γ is1 tð Þe−j
2π
λ
dx k−mð Þ cosθi

e
j
2π
λ
dy cosβi

þ
XP
i¼Qþ1

si tð Þe−j
2π
λ
dx k−mð Þ cosθi

e
j
2π
λ
dy cosβi þ ny;0 tð Þ�

¼
XQ
i¼1

γ�i

 !2 XQ
i¼1

γ i

 !XQ
i¼1

γ ie
−j
2π
λ
dx k−1ð Þ− m−1ð Þ½ � cosθi

e
j
2π
λ
dy cosβi

cum s1 tð Þ; s�1 tð Þ; s�1 tð Þ;�
s1 tð Þ�

þ
XP
i¼Qþ1

e
−j
2π
λ
dx k−1ð Þ− m−1ð Þ½ � cosθi

e
j
2π
λ
dy cosβi cum si tð Þ; s�i tð Þ; s�i tð Þ; si tð Þ

� �

¼
XP
i¼1

die
−j
2π
λ
dx k−1ð Þ− m−1ð Þ½ � cosθi

e
j
2π
λ
dy cosβi

ð7Þ
where

di ¼ γ i~ρ4;s1
ρ4;si

�
i ¼ 1;⋯;Q

i ¼ Qþ 1 ;⋯; P
ð8Þ

with ρ4;Si ¼ cum Si tð Þ; S�i tð Þ; S�i tð Þ; Si tð Þ
� � and ~ρ4;S1 ¼

XQ

i¼1
γ�i

� 	2 XQ

i¼1
γ i

� 	
ρ4;S1 .

Then, the Toeplitz matrices C1 and C2 can be con-
structed, respectively,

Fig. 1 Parallel array configuration for 2-D DOA estimation
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C1 ¼
c11 c21 … cN1
c12 c22 ⋯ cN2
⋮ ⋮ ⋯ ⋮
c1N c2N ⋯ cNN

2
664

3
775

¼

XP
i¼1

die
−j
2π
λ
dx 0ð Þ cosθi XP

i¼1

die
−j
2π
λ
dx −1ð Þ cosθi

…
XP
i¼1

die
−j
2π
λ
dx 1−Nð Þ cosθi

XP
i¼1

die
−j
2π
λ
dx 1ð Þ cosθi XP

i¼1

die
−j
2π
λ
dx 0ð Þ cosθi

⋯
XP
i¼1

die
−j
2π
λ
dx 2−Nð Þ cosθi

⋮ ⋮ ⋯ ⋮

XP
i¼1

die
−j
2π
λ
dx N−1ð Þ cosθi XP

i¼1

die
−j
2π
λ
dx N−2ð Þ cosθi

⋯
XP
i¼1

die
−j
2π
λ
dx 0ð Þ cosθi

2
66666666666666664

3
77777777777777775

¼

1 1 … 1

e
−j
2π
λ
dx 1ð Þ cosθ1

e
−j
2π
λ
dx 1ð Þ cosθ2 ⋯ e

−j
2π
λ
dx 1ð Þ cosθP

⋮ ⋮ ⋯ ⋮

e
−j
2π
λ
dx N−1ð Þ cosθ1

e
−j
2π
λ
dx N−1ð Þ cosθ2

⋯ e
−j
2π
λ
dx N−1ð Þ cosθP

2
66666664

3
77777775

d1

d2

⋯
dP

2
664

3
775

1 e
j
2π
λ
dx 1ð Þ cosθ1

… e
j
2π
λ
dx N−1ð Þ cosθ1

1 e
j
2π
λ
dx 1ð Þ cosθ2

⋯ e
j
2π
λ
dx N−1ð Þ cosθ2

⋮ ⋮ ⋯ ⋮

1 e
j
2π
λ
dx 1ð Þ cosθP

⋯ e
j
2π
λ
dx N−1ð Þ cosθP

2
6666666666664

3
7777777777775

¼ ADAH

ð9Þ

C2 ¼
~c11 ~c21 … ~cN1
~c12 ~c22 ⋯ ~cN2
⋮ ⋮ ⋯ ⋮
~c1N ~c2N ⋯ ~cNN

2
664

3
775

¼

XP
i¼1

die
−j
2π
λ
dx 0ð Þ cosθi

e
j
2π
λ
dy cosβi

XP
i¼1

die
−j
2π
λ
dx ‐1ð Þ cosθi

e
j
2π
λ
dy cosβi

…
XP
i¼1

die
−j
2π
λ
dx 1‐Nð Þ cosθi

e
j
2π
λ
dy cosβi

XP
i¼1

die
−j
2π
λ
dx 1ð Þ cosθi

e
j
2π
λ
dy cosβi XP

i¼1

die
−j
2π
λ
dx 0ð Þ cosθi

e
j
2π
λ
dy cosβi ⋯

XP
i¼1

die
−j
2π
λ
dx 2−Nð Þ cosθi

e
j
2π
λ
dy cosβi

⋮ ⋮ ⋯ ⋮

XP
i¼1

die
−j
2π
λ
dx N−1ð Þ cosθi

e
j
2π
λ
dy cosβi XP

i¼1

die
−j
2π
λ
dx N−2ð Þ cosθi

e
j
2π
λ
dy cosβi ⋯

XP
i¼1

die
−j
2π
λ
dx 0ð Þ cosθi

e
j
2π
λ
dy cosβi

2
66666666666666664

3
77777777777777775

¼

1 1 … 1

e
−j
2π
λ
dx 1ð Þ cosθ1

e
−j
2π
λ
dx 1ð Þ cosθ2

⋯ e
−j
2π
λ
dx 1ð Þ cosθP

⋮ ⋮ ⋯ ⋮

e
−j
2π
λ
dx N−1ð Þ cosθ1

e
−j
2π
λ
dx N−1ð Þ cosθ2

⋯ e
−j
2π
λ
dx N−1ð Þ cosθP

2
666666666664

3
777777777775

d1

d2

⋯
dP

2
664

3
775

e
j
2π
λ
dy cosβ1

e
j
2π
λ
dy cosβ2

⋯

e
j
2π
λ
dy cosβP

2
66666664

3
77777775

1 e
j
2π
λ
dx 1ð Þ cosθ1

… e
j
2π
λ
dx N−1ð Þ cosθ1

1e
j
2π
λ
dx 1ð Þ cosθ2

⋯ e
j
2π
λ
dx N−1ð Þ cosθ2

⋮ ⋮ ⋯ ⋮

1e
j
2π
λ
dx 1ð Þ cosθP

⋯ e
j
2π
λ
dx N−1ð Þ cosθP

2
6666666666666664

3
7777777777777775

¼ ADVAH

ð10Þ
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where

D ¼ diag d1; d2;⋯; dPð Þ ð12Þ

V ¼ diag v β1ð Þ; v β2ð Þ;⋯; v βPð Þ½ �

¼
e
j
2π
λ
dy cosβ1

e
j
2π
λ
dy cosβ2

⋯

e
j
2π
λ
dy cosβP

2
666664

3
777775

ð13Þ

Clearly, Eq. (11) means that the matrix A is a
Vandermonde matrix as long as θi, (i = 1,⋯, P) comes
from different angles. Therefore, A is a column full-rank
matrix, namely, rank (A) = P, whose columns are linearly
independent. From the expression of di in (8), we can see
that di is a non-zero constant. Thus, from (12), it is easy
to know that the matrix D is of rank P. Moreover, accord-
ing to Eq. (13), we confirm that V satisfies the condition of
full rank for different angles βi.
The eigenvalue decomposition of C1 can be written as

C1 ¼
XP
i¼1

ηigig
H
i ð14Þ

where {η1,…, ηP} and {g1,…, gP} are the non-zero eigen-
values and corresponding eigenvectors of the matrix C1.
The pseudo-inverse of the matrix C1 is

C†
1 ¼

XP
i¼1

ηi−1gig
H
i ð15Þ

Due to the fact that A is a column full-rank matrix,
from (9), we can attain

DAH ¼ AHA
� �−1

AHC1 ð16Þ

Combining (10) with (16), the alternative expression of
C2 can be achieved as follows

C2 ¼ ADVAH

¼ AVDAH

¼ AV AHA
� �−1 AHC1 ð17Þ

Right multiplying both sides of (17) by C†
1A

C2C†
1A ¼ AV AHA

� �−1
AHC1C†

1A ð18Þ

Substituted (14) and (15) into (18)

A ¼ a θ1ð Þ;a θ2ð Þ;…;a θPð Þ½ �

¼

1 1 … 1

e
−j
2π
λ
dx 1ð Þ cosθ1

e
−j
2π
λ
dx 1ð Þ cosθ2

⋯ e
−j
2π
λ
dx 1ð Þ cosθP

⋮ ⋮ ⋯ ⋮

e
−j
2π
λ
dx N−1ð Þ cosθ1

e
−j
2π
λ
dx N−1ð Þ cosθ2

⋯ e
−j
2π
λ
dx N−1ð Þ cosθP

2
66666666664

3
77777777775

ð11Þ

a

b

Fig. 2 2-D DOA estimation scattergram. a White noise. b Color noise
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C2C†
1A ¼ AV AHA

� �−1
AH

XP
i¼1

ηigig
H
i

 ! XP
i¼1

ηi−1gig
H
i

 !
A

¼ AV AHA
� �−1

AH
XP
i¼1

gig
H
i A

ð19Þ

Notice that
XP
i¼1

gig
H
i is an identity matrix, that is

XP
i¼1

gig
H
i ¼ I. Thus, Eq. (19) can be further rewritten as

C2C†
1A ¼ AV AHA

� �−1 AHA
� �

¼ AV

ð20Þ

From (20), 2-D angle parameters, which are obtained
by performing EVD on C2C†

1 denoted as Toeplitz-based
generalized DOA matrix, lie in A and V. By performing
EVD on C2C†

1

C2C
†
1 ¼

XP
i¼1

ξ iuiu
H
i ð21Þ

where ξi and ui are the non-zero eigenvalues and the
corresponding eigenvectors of the matrix C2C†

1 . Thus,
the P bigger signal subspaces can be obtained from (21).
It can be verified that the subspaces spanned by A and
the signal subspaces U = [u1,⋯, ui⋯, uP] are the same,
where ui is the ith column of the matrix U.
Define hi = ui/ui (1), where ui(j), (j = 1,⋯,N) denotes

the jth element of vector ui, and then we can get

κi ¼ 1
N−1

XN−1

m¼1

arg
hi mþ 1ð Þ
hi mð Þ

� 

:

ð22Þ

where hi(j), (j = 1,⋯,N) represents the jth element of
vector hi.

Therefore, by combining a θið Þ ¼

1; e−j
2π
λ dx cosθi ;…; e−j

2π
λ dx N−1ð Þ cosθi

h iT
and v βi

� � ¼ ej
2π
λ dy cosβi ,

the estimated 2-D DOAs can be obtained

a

b

Fig. 3 The MRMSE versus SNR in both white and color noises. a θi.
b βi

a

b

Fig. 4 The NPS versus SNR in both white and color noises. a θi. b βi
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θi ¼ arccos
λ

2πdx
κi

� �
ð23Þ

βi ¼ arccos
λ

2πdy
arg ξ ið Þ

� 

:

ð24Þ

Till now, 2-D DOAs of incoming signals, namely, θi
and βi can be achieved automatically paired according to
Eqs. (23) and (24) without additional computations for
parameter pair-matching.
The proposed algorithm with finite sampling data can

be implemented as follows
Step 1: Compute the cumulant elements cmk and ~cmk

according to (6) and (7), respectively;
Step 2: Reconstruct the two Toeplitz matrices C1 and

C2 by (9) and (10);
Step 3: Obtain the pseudo-inverse matrix C†

1 by per-
forming the EVD of the matrix C1;

Step 4: Perform EVD of C2C†
1 to obtain the non-zero

eigenvalues and the corresponding eigenvector;
Step 5: Estimate the 2-D DOAs of incident coherent

source signals via (22)–(24).

3.2 Location analysis
In this subsection, the advantage of the proposed
algorithm is discussed. As for two N ×N dimension
Toeplitz matrices, the maximum number of signals that
can be distinguished is N−1 by the proposed FOC-ITMR
method. Assume that the number of each subarray in
[26] is 2M + 1, the FOC-TMR method can distinguish
M signals. According to the parameters set in [25], the
FOC-FSS method can tell the same number of signals
as [26]. In other words, based on the same array config-
uration and the same number of sensors, the proposed
algorithm has twice larger array aperture than the

a

b

Fig. 5 The MRMSE versus snapshots in both white and color noises. a θi. b βi
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compared FOC-TMR algorithm in [26]. Therefore, the
proposed algorithm can not only resolve more signals
than the compared method in [26] but also achieve bet-
ter estimation performance.

4 Simulation result
In this section, simulation results are presented to illustrate
the validity of the proposed method. We evaluate the
performance of the proposed FOC-ITMR algorithm via
comparison with the FOC-FSS [25] and the FOC-TMR
[26] algorithms with several experiments in both white and
color Gaussian noise environments. The color Gaussian
noise z(t) is simply considered as bellow [26, 27]

z tð Þ ¼ n tð Þ−0:8n t−1ð Þ þ 0:7n t−2ð Þ ð25Þ

where n(t) is white Gaussian noise. Two performance
indices, called the maximum root-mean-square error
(MRMSE) and normalized probability of success (NPS),
are defined to evaluate the performance of the algorithms
with respect to variables such as SNR and snapshots.

MRMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

MC

XMC

i¼1

max σ̂ i;r−σ i
� �� �2

vuut ð26Þ

where MC denotes the times of Monte Carlo simulation.
σi denotes θi or βi, and σ̂ i;r is the parameter to be esti-

mated of θ̂ i or β̂i.

NPS ¼ ϒ suc

Τ total
ð27Þ

where ϒsuc and Τtotal denote the times of success and
Monte Carlo trial, respectively. Furthermore, a successful

experiment is that satisfies max θ̂ i−θi
��� ���� 	

< ε or max

β̂i−βi
��� ���� 	

< ε, where ε equals 0.8 and 1.8 for comparison

versus SNR and snapshots, respectively.
Experiment 1: 2-D DOA estimation performance
Assume that four non-Gaussian signals with θi and βi

impinge from {40°, 80°, 60°, 85°} and {35°, 75°, 60°, 55°},
separately, and the number of sensors in each subarray
is N = 5 with sensor displacement dx = dy = λ/2. Figure 2
plots the paired results of four targets from 50 Monte

a

b

Fig. 6 The NPS versus snapshots in both white and color noises. a θi. b) βi
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Carlo trials with SNR = 15 dB and snapshots L = 1500,
which shows that the 2-D DOA are paired correctly in
our scheme in both white and color Gaussian noise situ-
ations. On the contrary, the compared FOC-TMR and
FOC-FSS methods cannot distinguish them due to array
aperture reduced.
Experiment 2: MRMSE and NPS versus SNR
In this simulation, three non-Gaussian signals with θi

and βi are incoming from {40°, 85°, 90°} and {45°, 65°, 60°},
separately, and the number of sensors in each subarray is

N = 7. The number of snapshots is set to L = 1500, and the
SNR is varied from −10 to 25 dB. The θi and βi MRMSE
curves of the proposed method and the FOC-TMR and
FOC-FSS methods versus SNR are shown in Fig. 3, where
2000 Monte Carlo trials are used. Figure 3 illustrates that
the proposed method has much lower MRMSE than the
compared FOC-TMR and FOC-FSS algorithms in both
spatially white noise and spatially color noise environ-
ments, especially at low SNR. Figure 4 illustrates the NPS
of the DOAs versus SNR, which illustrates that the

Fig. 7 The MRMSE versus angle separation in both white and color noises

Fig. 8 The NPS versus angle separation in both white and color noises
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performance of the proposed method is better than that
of FOC-TMR and FOC-FSS algorithms as the SNR in-
creases. The reason is that the proposed algorithm utilizes
the whole ULAs to estimate the source signals, which
avoids the loss of array physical aperture and achieves ex-
cellent decoherence performance.
Experiment 3: MRMSE and NPS versus snapshots
The third simulation considers the same scenario as the

second one at different number of snapshots. When the
SNR is 0 dB, the MRMSE of the estimated parameters
against number of snapshots is shown in Fig. 5. It can be
seen from Fig. 5 that the proposed method achieves higher
estimation accuracy than the FOC-TMR and FOC-FSS al-
gorithms as the number of snapshots increases.
In addition, the NPS of the DOAs signals against the

number of snapshots is shown in Fig. 6 when the SNR is
0 dB. From Fig. 6, we can see that the performance of
the proposed algorithm is superior to the compared
methods as the number of snapshots is varied from 0 to
500. That is, in small number of snapshots, the superior-
ity of the proposed algorithm is more pronounced. This
indicates that the proposed algorithm will be more use-
ful when the low-computational cost and highly real-
time data process are required.
Experiment 4: MRMSE and NPS versus angle separation
The fourth simulation studies the estimation per-

formance of the proposed algorithm between θ and β.
The number of snapshots is 1500, and the input SNR is
10 dB. Consider three non-Gaussian signals with 2-D
DOAs θ and β coming from θ = [40o, 85o, 85o + detra]
and β = [45o, 60o + detra, 60o], where the “detra” denotes
the angle separation, varying from 1° to 10°. The simula-
tion experiments are based on 200 Monte Carlo trials.
The MRMSE of the 2-D DOAs versus angle separation

has been shown in Fig. 7. It can be observed from Fig. 7
that no matter in white Gaussian noise situation or in
color Gaussian noise situation, the MRMSE of θ achieves
a similar performance to the MRMSE of β. Figure 8 shows
the NPS of the 2-D DOAs versus angle separation.
Apparently, the same conclusions can be drawn. Figure 8
illustrates that the performance of θ is approximately
identical to that of the β in both white and color Gaussian
noise situations.

5 Conclusions
In this paper, a novel FOC-ITMR method for coherent
signals estimation is proposed. The whole information of
the two parallel ULAs is fully utilized by changing the
reference element to reconstruct the two new cumulants-
based matrices, which avoids the loss of array physical
aperture. Therefore, the proposed method gains excellent
decoherence performance. Simulation results show the
validity of the presented FOC-ITMR algorithm.
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