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DOA estimation for wideband LFM signals
with a few snapshots
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Abstract

The wideband linear frequency modulation (LFM) signals are widely used in information systems. The conventional
direction-of arrival (DOA) estimation algorithms of LFM signals rely on a large number of snapshots, some of which
are not reliable in numerous practical applications such as underwater array processing. To solve the above
problem, we present a modified sparse iterative covariance (MSPICE)-based estimation method in fractional Fourier
transform (FrFT) domain to estimate the DOA of wideband LFM signals. First, we extend the original SPICE
algorithm in FrFT domain with a specific transform order for wideband LFM signals. Then, we utilize the energy
centrobaric modification method to make the original SPICE more accurate without adding more computational
complexity. The simulation results demonstrate the effectiveness of the proposed method.
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1 Introduction
DOA estimation arises an important problem in a num-
ber of fields including sonar, radar, and wireless commu-
nication in recent years [1–4]. The classical delay-and-
sum (DAS) method suffers from low resolution and high
sidelobe levels, while the well-known multiple signal
classification (MUSIC) method, which requires a large
amount of snapshots, provides super-resolution DOA
estimation for narrowband uncorrelated signals [5]. Fur-
thermore, the wideband LFM signal, which is an import-
ant class of non-stationary signals, has been widely used
in the abovementioned information systems. So many
DOA estimation approaches have been proposed for
them, such as MUSIC method in FrFT domain [6], Esti-
mating signal parameters via rotational invariance tech-
niques (ESPRIT) in FrFT domain [7] and ambiguity-
function-based techniques [8], etc. However, none of
these methods is able to provide high-angular resolution
depending on very low snapshots which is the case when
the environment being sensed by the array is stationary
for a short duration of time.

IAA, SLIM, and SPICE algorithms [9] proposed by
Stoica are sparsity-based techniques that can estimate
the DOA depending on a few snapshots with high-
resolution and low sidelobes. But they do not apply to
wideband LFM signals, because the steering vector of
the received signal model is time-variant. So some ex-
tensions to this method have been proposed to deal with
the wideband LFM signals, such as spatial resampling
(SR) method [10], the accuracy of which is not high due
to using an approximate model for wideband LFM
signals.
In this paper, a FrFT-MSPICE method is proposed to

estimate the DOA for wideband LFM signals using a few
snapshots based on the modified SPICE algorithm and
FrFT. First, wideband LFM signal was represented as a
sine wave with a single frequency in FrFT domain, so
that the time-invariant steering vector can be obtained
for the original SPICE algorithm. Then, we improve the
original SPICE for higher accuracy and utilize it to esti-
mate the DOA values in FrFT domain. The accuracy of
the SPICE depends on the number of scanning points in
the region, but increasing this number for higher accur-
acy will also dramatically increase the computational
complexity. So, we utilize the energy centrobaric modifi-
cation method [11] to improve the accuracy of SPICE
without adding too much computational cost. Finally,
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the simulation results confirm the effectiveness of our
algorithm.

2 Array model
Let us consider an active radar system as shown in
Fig. 1. The linear array of the radar has M sensors
uniformly placed along the x axis. The transmitter is
located at the origin point. The distance between
two adjacent sensors is d. T1, T2, …, TK are K Far-
field targets at θ, where θ = [θ1, θ2,…, θK]. Here K is
usually unknown, so it is considered to be the
amount of potential targets (scanning points) in the
region, and it is much larger than the amount of ac-
tual ones. Only a few signal power estimates of the
potential targets will be non-zero, so sparsity-based
algorithm can be used in array processing
applications.
The transmitter emits a LFM signal that can be

expressed as

x tð Þ ¼ a exp j2πf 0t þ jπμt2
� � ð1Þ

where a is the signal amplitude, f0 is the centre fre-
quency, and μ is the chirp rate.
The received signal at the sensor m can be expressed

as the sum of K delayed versions of x(t), given by

xm tð Þ ¼
XK

k¼1

ρkxk t−τmk
� �þ em tð Þ ð2Þ

where em(t) for m = 1, 2, …, M is the additive Gauss
white noise at the sensor m, ρk is the backscattering
coefficient of target k for k = 1,2,…,K. τmk is the time
delay of the kth signal traveling to the sensor m
relative to the reference sensor (the first sensor),
which can be expressed as

τmk ¼ m−1ð Þd sinθk=c ð3Þ
where c is the wave speed.

The received signals at the sensors can be written in
matrix form as

x tð Þ ¼ as tð Þ þ e tð Þ ð4Þ
where s(t) = [ s1(t), s2(t), … , sK(t)]

T is the waveform
vector, a = [a(θ1), a(θ2),…, a(θK)]

T is the steering vector
with

a θkð Þ ¼ ½ exp −j2πf 0τ1 þ jπμτ21
� �

exp −j2πμτ1tð Þ;…;

exp −j2πf 0τM þ jπμτ2M
� �

exp −j2πμτMtð Þ�T

ð5Þ
If the bandwidth is small compared to the carrier fre-

quency, a(θk) can be considered as time-invariant (i.e.,
the term exp(-j2πμτmt) in (5) can be neglected), but for
wideband LFM, it can not. So, the steering vector a(θk)
of wideband LFM depends on the time t, and the SPICE
algorithm for narrowband signals cannot be applied dir-
ectly to wideband signals. To solve this problem, we de-
rive FrFT method.

3 The fractional Fourier transform of LFM signal
The FrFT of signal x(t) is represented as [7, 12, 13]

X α; uð Þ ¼ Fp x tð Þ½ � ¼
Z þ∞

−∞
x tð ÞKα t; uð Þdt ð6Þ

where

Kα t; uð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−j cotα

p
exp jπ t2 cotα−2tu cscαþ u2 cotα½ �f g; α≠nπ

δ t−uð Þ; α ¼ 2nπ
δ t þ uð Þ; α ¼ 2n� 1ð Þπ

8<
:

with p is the transform order, Fp is the FrFT operator,
Kα(t,u) is the kernel function, α is the rotation angle, α =
pπ/2.
As a generalization of the standard Fourier transform,

the FrFT can be regarded as a counterclockwise rotation
of the signal coordinates around the origin in the time-
frequency plane, and the rotation angle is α. When α
=2nπ + π/2, FrFT is equal to Fourier transform.
The FrFT of x(t) in (1) about angle α can be repre-

sented as

X α; uð Þ ¼ a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ j tanα
1þ μ tanα

s

� exp jπ
u2 μ− tanαð Þ þ 2uf 0 secα−f

2
0 tanα

1þ μ tanα

� �

ð7Þ
When α = αd = arctan(μsc

2), we can get

X αd; uð Þ ¼ C exp j2πf 0 cosαdu½ � ð8Þ
where sc is the scale factor to normalize signals. In this
paper, we use Ozaktas’s fast sampling-type discrete FrFT

Fig. 1 The geometry of the array system
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method [14] to compute the digital values for FrFT, so,
here, sc ¼

ffiffiffiffi
N

p
=f s with N denotes the number of snap-

shots, fs is the sampling frequency. C ¼ a cosαdffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ j tanαd

p
exp −jπf 2

0
sinαd cosαd

h i
, which is a constant.

Therefore, after the FrFT, the LFM signal becomes a sine
wave with a single frequency f = f0 cos αd.
Simulation is run to prove this dechirp property of

FrFT with f0 = 2.4 MHz, μ0 = 8 × 1013Hz/s, fs =
600 MHz, N = 301. The result is shown in Fig. 2. The
LFM signal in time domain (Fig. 2a) is changed into
a sine signal (Fig. 2b) in FrFT domain with rotation
angle αd.
According to the time shift characteristic of FrFT, we can get

Fp x t−τð Þ½ � ¼ exp jπτ2 sinα cosα−j2πuτ sinα
� �

� X αd;u−τ cosαð Þ ð9Þ

At the sensor m, the received signal in FrFT domain
which is reflected by target k can be expressed as

Xm
k αd;uð Þ ¼ Fp x t−τmk

� �� �

¼ ρkaC exp j2π f 0 cosαd−τ
m
k sinαd

� �
u

� �

� exp jπ τmk
� �2

sinαd cosαd−2f cos2αdτmk
h in o

ð10Þ

Because τmk sinαd is very small, so we can get

Xm
k αd;uð Þ≈ρkaC exp j2πf 0 cosαduð Þ
� exp jπ τmk

� �2
sinαd cosαd−2f cos2αdτmk

h in o

ð11Þ

Then (10) can be reformulated as

Xm
k αd;uð Þ ¼ Am

k Sk uð Þ ð12Þ

where

Am
k ¼ exp jπ τmk

� �2
sinαd cosαd−2f cos2αdτmk

h in o

ð13Þ

Sk uð Þ ¼ ρkaC exp j2πf 0 cosαduð Þ ð14Þ

Put (3) into (13), we can get

Am
k θkð Þ ¼ Am

k ¼ exp
	
jπ
�
m−1ð Þ2d2 sin2θk=c2 sinαd cosαd

−2f cos2αd m−1ð Þd sinθk=c
�


ð15Þ

Take FrFT on (2), we can get

Xm αd;uð Þ ¼
XK

k¼1

Xm
k αd;uð Þ þ Em αd; uð Þ ð16Þ

Therefore, the FrFT of (4) can be given as

X ¼ ASþ E ð17Þ

where

S ¼ diag S1 uð Þ; S2 uð Þ;…; SK uð Þf g; X
¼ X1;X2;…;XM

� �T
; A ¼ A1;A2;…;AK½ �T

with

Xm ¼ Xm
1 αd; uð Þ;Xm

2 αd; uð Þ;…;Xm
K αd; uð Þ� �T

; Ak ¼ A1
k θkð Þ;A2

k θkð Þ;…;AM
k θkð Þ� �T

After FrFT, the steering vector will not depend on u, so
we can use the SPICE algorithm to estimate the DOA
values θk.

4 DOA estimation by FrFT-MSPICE
The discrete form of (17) can be given as

X nð Þ ¼ AS nð Þ þ E nð Þ ð18Þ

where n = 1, 2,…, N is the number of snapshots.
Let P be a K × K diagonal matrix, whose diagonal con-

tains the power at each angle on the scanning grid. The
initial estimates P̂k 0ð Þ can be obtained using the SFLS
method [15]

Fig. 2 The dechirp property of FrFT. a Time domain. b FrFT domain
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P̂k 0ð Þ ¼

XN
n¼1

Ak
HX nð Þ�� ��2

Ak
HAk

� �2
N

ð19Þ

The noise covariance matrix R of X(n) can be given as

R ið Þ ¼ E XXH
� � ¼ AP̂

i−1ð Þ
AH ð20Þ

Then in the i + 1 iteration, the power at each angle on
the scanning grid can be updated as

pk iþ1ð Þ ¼ βk ið Þ
�� ��

w
k
1=2XK

l¼1

wl1=2 βl ið Þ
�� ��

ð21Þ

where

wk ¼ jjak jj2
tr Rð Þ ; βk

�� ��2 ¼ QX XHX
� �

XHQH
� �

kk=N
2; Q ¼ PAR−1

Then iterate (20)–(21) until P̂k will not change obviously.
Finally, we search the positions of the spectral peak of

P̂k which are the final DOA estimates. The details of
SPICE algorithm can be found in [9].
It is obvious that the accuracy of the DOA estimation de-

pends very much on the angular scanning grid size. The
higher accuracy we need, the smaller the grid size is, which
means K is larger. But increasing K will dramatically in-
crease the computational complexity of the algorithm. In

order to make the DOA estimation more accurate without
increasing too much complexity, we utilize the energy cen-
trobaric modification method which is commonly used for
modification of the frequency estimation in discrete
spectrum.
Actually, because the existence of noise, when SPICE

scans angles around the real DOA value, the energy esti-
mation (P̂k ) will not be zero, which means there is “energy
leakage” around the real DOA in the angular spectrum.
Suppose that there is a peak at k = k* with the energy Pk*

in the angular spectrum. Then, we search for Pk * ', which is
the largest Pk around k*. Finally, we utilize these two spectral
lines to estimate θ. But if Pk * + 1 and Pk *− 1 are nearly equal,
we consider θ= k*, and it does not need modification.

θ̂ ¼ k � Pk� þ k �0 Pk�0
Pk� þ Pk�0

Pk�þ1−Pk�−1j j > η

k � Pk�þ1−Pk�−1j j≤η

8>><
>>:

ð22Þ

where Pk * ' = max(Pk * + 1, Pk * − 1), η is a specified tolerance.
The whole iteration procedure can be summarized in

Table 1.

5 Simulation results
We evaluate the performance of the proposed FrFT-
MSPICE algorithm and compare it with other alternative
methods.

Table 1 Iteration procedue of MSPICE
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5.1 Angular spectrum comparison
We investigate the performance of our algorithm about
angular resolution, sidelobe level, and accuracy in the
angular spectrum. We also compare it with other two al-
gorithms: one is FrFT-MUSIC algorithm [6] which uti-
lizes MUSIC algorithm combined with FrFT. But in
order to apply for active radar, the rotation angle α has
been changed from -arccotμ to arctanμ; the other is SR-
IAA algorithm [10] which uses spatial resampling
method combined with IAA.
The LFM signal with center frequency of 12 MHz and

a bandwidth of 6 MHz is used in the simulation. The
array contains 32 sensors which are uniformly spaced at
half wavelength. The sampling frequency is 60 MHz and
the number of snapshots is 2. We consider 3 targets at

70, 72, and 110°. The noise is assumed to be Gaussian
random processes with zero mean and the SNR is 20 dB.
The scanning grid for the three algorithms is uniform in
the range from 1 to 180°, with 1° increment between ad-
jacent grid points, so K = 180. The number of iterations
is 10. One hundred independent runs are simulated to
obtain the angular spectrum. Furthermore, each power
value is normalized as 10 log 10(Pk/Pmax), where Pmax is
the maximum value of Pk, k = 1,2,…,180.
We can see from Fig. 3a that the FrFT-MUSIC method

can exactly estimate the DOA of the target at 110°, but
it suffers from lower angular resolution than other two
with low snapshots so that it can not separate the two
targets at 70 and 72° and consider them as one target at
71°. From Fig. 3b, the DOA estimation of SR-IAA is 62,

Fig. 3 Comparison of the angular spectrum. a FrFT-MUSIC. b SR-IAA. c FrFT-CSPICE
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65, and 117°. We can see that although the SR-IAA
method has a higher resolution and lower sidelobe level
than FrFT-MUSIC under low snapshots conditions and
it can separate the two targets at 70 and 72°, but the
DOA estimation errors are larger than other two algo-
rithms because it uses an approximate model for wide-
band signals which omits the second order item of the
original LFM model. Besides, we also found that this al-
gorithm would be more accurate when the signal band-
width is much smaller. From Fig. 3c, our FrFT-MSPICE
algorithm produces the angular spectrum with lower
sidelobe levels, higher angular resolution and higher ac-
curacy in low snapshots conditions.

5.2 Accuracy comparison between MSPICE and SPICE
In this section, we compare the accuracy of the proposed
MSPICE with the original SPICE to demonstrate the ef-
fectiveness of using the modification method on SPICE.
We use narrowband signal here because FrFT and SR
may cause additional errors. Figure 4 shows the angle
root mean squared error (RMSE) of the two algorithms
for varying SNR from 0 to 30 dB. The scanning grid is
uniform in the range from 1 to 180° with 1° increment.
The target is placed at 60.0, 60.1,…, 60.9° respectively,
and each RMSE in Fig. 4 is calculated as the sum of
these ten individual RMSE. The results of 100 Monte
Carlo trials are shown in the plot. We can observe that
our modified SPICE algorithm has a higher accuracy
than the original SPICE using the same scanning grid
size without increasing much computational complexity.

6 Conclusions
This paper has presented a FrFT-MSPICE method for
the DOA estimation of wideband LFM signal. We ex-
tend the SPICE algorithm in FrFT domain so that the

DOA of wideband LFM signals can be estimated with a
few snapshots. The proposed method has high angular
resolution and low sidelobe levels. We also utilize the
energy centrobaric modification method in order to in-
crease the accuracy of the SPICE algorithm without im-
posing too much additional computational burden. The
simulation results have demonstrated the effectiveness
of the proposed method.
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