
Smida EURASIP Journal onWireless Communications and
Networking  (2017) 2017:21 
DOI 10.1186/s13638-017-0809-3

RESEARCH Open Access

Coding to reduce the interference to
carrier ratio of OFDM signals
Besma Smida

Abstract

In this paper, we propose a simple approach to reduce the sensitivity of OFDM system to the carrier frequency offset
(CFO). The main idea is to choose a well-known channel code and to rotate each coordinate by a fixed phase shift
such that the maximum inter-carrier interference (ICI) taken over all sub-carriers is minimized. This approach is based
on a geometric interpretation of the peak interference to carrier ratio (PICR) of OFDM signals. Simulation results show
that a reduction in PICR of 7 dB can be easily achieved. Furthermore, we addressed the fundamental limit of the
proposed technique by providing both an exact and an approximate lower bound of PICR of phase-shifted binary
codes. The bounds are applied to some codes: non-redundant binary code, BCH codes, and Reed-Muller codes.
Simulation results demonstrated that phase-shift designs approach lower bounds and are resilient to CFO change.
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1 Introduction
1.1 Motivations
Orthogonal frequency-division multiplexing (OFDM) is
a multicarrier modulation technique that has been
implemented for many high-speed wireless and wireline
applications. Indeed, the orthogonal properties among
subcarriers of OFDM lead to high spectral efficiency
and excellent ability to cope with multipath fad-
ing environment. Since the spectra of the subcarriers
are overlapping, an accurate frequency-synchronization
technique is needed. Due to oscillator inaccuracies
and non-ideal transmitter/receiver synchronization, the
orthogonal properties are easily broken down and result
in errors due to frequency offsets. It is well-known that the
carrier frequency offset (CFO) reduces the useful signal
power and creates inter-carrier interference (ICI) [1, 2].

1.2 Related works
Two main approaches have been proposed in the litera-
ture to mitigate the ICI problem caused by the CFO. One
approach is to estimate and remove the frequency offset
[3–6]. In this approach, the frequency-offset estimation
is generally performed in two steps: coarse frequency-
offset estimation, which estimates the partial frequency
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offset that is a multiple of the subcarrier spacing and fine
frequency-offset estimation, which estimates the remain-
ing part of the offset. There exist several CFO estimation
techniques, e.g., training basedmethods [7–12], and semi-
blind or blind methods [3, 13]. Another approach is to
use coding1 to reduce the sensitivity of the OFDM sys-
tem to frequency offsets [14–17]. The coding approach is
generally adopted after the removal of coarse CFO and
hence assumes fine residual CFO. A large range of coding
techniques has been developed in recent years and can be
classified as follows (see Table 1):

• Self-cancellation: A simple and effective method—
known as the ICI self-cancelation scheme—was
proposed by Zhao and Haggman in [18] and later
generalized in [15, 19], where polynomial coding in
the frequency domain is used to mitigate the effect of
frequency offset. In this method, copies of the same
data symbol are modulated on r adjacent sub-carriers
using specific weights. This method can reduce the
ICI at the price of lowering the transmission rate by a
factor r. To further improve the ICI self-cancellation
performance, many researchers proposed more
efficient mapping (optimized weighting coefficients)
for the redundant data symbol modulated over
adjacent or non-adjacent subcarriers [20–27]. The
weights are designed such that, at the receiver, the
ICI at each subcarrier is reduced when a frequency
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Table 1 Coding techniques to reduce OFDM systems sensitivity
to frequency shifts

Coding technique Complexity Transmission-rate
reduction

Self-cancellation [15, 18–27] Slight increase ≥2

Windowing [30, 31] Moderate increase ≥2

Two-path transmission [32–36] Slight increase 2

Correlative coding [37, 38] Moderate increase None

This paper Slight Increase None

offset is present. Note that ICI self-cancellation
techniques can be regarded as a coding scheme,
where only the codewords with low ICI are used, this
key idea was first proposed in [28, 29].

• Windowing: Seyedi and Saulnier [30] showed that
the polynomial coding in the frequency
domain—used by ICI self-cancellation schemes—is
equivalent to using windowing in time domain. They
hence used windowing at both the transmitter and
the receiver to generalize and improve
self-cancellation schemes. Recently, Real and
Almenar [31] used windowing at the transmitter only
allowing a reduction of the receiver complexity
without any performance degradation. The
windowing methods reduce ICI sensitivity
significantly but they lower the transmission rate and
increase the complexity of the transceiver.

• Two-path transmission: The two-path transmission
method halves the spectral efficiency similar to ICI
self-cancellation techniques in [18]. However, unlike
ICI self-cancellation method, two-path transmission
method transmits the data copies in two
concatenated OFDM blocks. The first path
represents the standard OFDM signal and the second
one is formed by a conjugate of the first path [32, 33].
This approach was generalized in [34–36] by
introducing phase rotation and space-time coding.

• Correlative-coding: Contrary to all previous coding
techniques, that reduce the sensitivity to CFO at the
price of reducing the transmission rate, the
correlative coding method do not reduce the data rate
[37, 38]. This method is based on frequency-domain
Partial-response Coding (PRC). PRC were originally
proposed in the time domain to reduce the sensitivity
of single-carrier systems to time offset.
The PRC does not sacrifice spectral efficiency but
needs a maximum-likelihood sequence estimator
(MLSE) thus increasing the receiver complexity. An
interesting combination of correlative-coding and
self-cancellation was proposed in [39].

1.3 Our contributions
The intend of this paper is to reduce the sensitivity
of OFDM systems to CFO without reducing the

transmission rate. Our technique is inspired by the
following key observation: all current wireless OFDM
systems include forward-error-correction or channel
codes to reduce the probability of error. Indeed, the
forward-error-correction or channel codes have been
studied and used for controlling errors in data trans-
mission for the last half century (since Shannon 1948
landmark paper). Sathananthan and Tellambura related
ICI reduction to channel coding and showed the capability
of any forward-error correction code to reduce the errors
caused by the ICI in [14]. We propose here to extend the
role of those codes in OFDM systems. The main idea is
to rotate each coordinate of the channel code by a fixed
phase-shift such that the maximum inter-carrier inter-
ference taken over all sub-carriers is minimized. Clearly,
the phase-shifted version of the code has the same error
correcting capability, rate, decoding complexity as the
original code. But it has lower maximum ICI and this
reduction comes with no reduction of the spectral effi-
ciency of the system. We proposed a simple technique—
phase-shift—to reduce the sensitivity of OFDM system
to CFO in [40]. This paper is an extension of this
work—it provides an analytical evaluation of the proposed
technique.
The key departure of our research from prior works on

CFO effect reduction is that (a) we provide a geomet-
ric interpretation of the peak interference to carrier ratio
(PICR) of OFDM signals, (b) we propose a simple phase-
shift approach to reduce the sensitivity of OFDM to fine
frequency offset, (c) we analyze the fundamental limit of
the proposed technique and obtain a lower bound of the
PICR of phase-shifted binary codes which we evaluate for
non-redundant binary code, BCH codes, and Reed-Muller
codes, and (d) we numerically evaluate phase-shift designs
and prove their resilience to CFO change.

2 Statement of the problem
2.1 Notations and preliminaries
An OFDM signal is the sum of many independent
signals modulated onto sub-channels of equal band-
width. The OFDM transmitter applies the inverse discrete
Fourier transform (IDFT) operation and sends the sym-
bol sequence to the RF chain. The transmitted signal at
time t may be represented as the real part of the complex
envelope

Sc(t) =
N−1∑

n=0
cn exp(j2π(f0 + nfs)t) for 0 ≤ t ≤ Ts,

(1)

where j = √−1, f0 is the first subcarrier frequency and fs
is the bandwidth of each subcarrier. The OFDM-symbol
duration Ts is equal to 1

fs to ensure the orthogonality
among the subcarriers. The vector c =[c0, c1, . . . , cN−1] of



Smida EURASIP Journal onWireless Communications and Networking  (2017) 2017:21 Page 3 of 11

lengthN is the modulating data sequence. We refer to c as
codeword of code C that maps blocks of k input bits into
blocks of N symbols. The element of the vector c, cn, are
typically taken from a constellation Q. In this paper, we
assume an equal energy constellationQ (i.e., all the points
in Q have the same energy such as MPSK). We assume
that Sc(t) is transmitted on an additive white Gaussian
noise (AWGN) channel. The receiver receives the sig-
nal R(Sc(t)) perturbed by noise and performs the inverse
operations: the RF chain at the receiver down-converts,
processes the received data. The receiver then applies a
discrete Fourier transform (DFT) to generate estimate of
c. Finally it extracts the block of input bits by applying
a suitable error-correction algorithm. The received signal
sample for the kth subcarrier after DFT can be written as

yk = ckb0 +
N−1∑

l=0,l �=k
bl−kcl + nk

= ckb0 + Ik + nk for k = 0, 1, . . . ,N − 1,

(2)

where nk is a complex Gaussian noise sample. The first
term in the right-hand side of (2) represents the desired
signal. The ICI term, attributable to the CFO, on the kth
subcarrier is expressed by Ik . The ICI coefficients bk are
given by [29]

bk = sinπ(k + ε)

N sin π
N (k + ε)

exp
[
jπ

(
1 − 1

N

)
(k + ε)

]
,

= sinπε

N sin π
N (k + ε)

exp
[
jπ

(
1 − 1

N

)
ε − jπ

k
N

]
, (3)

where ε is the normalized fine frequency offset defined as
a ratio between the fine frequency offset and the subcar-
rier spacing (i.e. |ε| ≤ 1

2 ). We note that Ik is a function of
both c and ε. In the following, we will list the main prop-
erties of the the ICI coefficients bk . Those properties give
insights into the ICI interference Ik and will be used in the
rest of the paper.

1. Without frequency error (ε = 0), bk reduces to the
unit impulse sequence bk = δ[k].

2. The coefficient b0 depends on ε but is independent
of k. In other words, all subcarriers experience the
same degree of attenuation and rotation of the
wanted component.

3. bk = bN+k , so if we consider an N modulo
numbering −k maps to N − k. This property is easy
to prove and is used in [20] to propose a repetition
code that reduces the ICI.

4. All the coefficients bk for k �= 0 slowly vary with k,
bk+1 � bk , the slow varying nature of bk is the key
motivation for self ICI cancelation [19]. This
property will be used here to derive a more practical
(approximate) lower bound of PICR of phase-shifted
binary codes.

5. Under the assumption of small normalized frequency
offset (|ε| � 1), the coefficients bk became

bk � sinπε

N sin πk
N

exp
[
jπ

(
1 − 1

N

)
ε − jπ

k
N

]
.

6. The average power of the inter-carrier interference is
derived as [1]

E
[|Ik|2

] =
N−1∑

l=1
|bl|2 = 1 − |b0|2, (4)

where E [.] denotes the expected value over the
distribution of data.

3 Peak interference to carrier ratio evaluation
In this section, we provide a geometric interpretation of
the maximum ICI taken over all sub-carriers that explic-
itly incorporates the distance between the codewords c
and some specific points. Based on this interpretation, we
will propose a simple phase-shifted approach to reduce
the sensitivity of OFDM systems to CFO.

3.1 PICR definition
Sathanannthan and Tellambura [28, 29] defined the peak
interference to carrier ratio (PICR) as the maximum
interference-to-signal ratio for any subcarrier:

PICR(c, ε) = max
0≤k≤N−1

|Ik|2
|b0ck|2 . (5)

It specifies the worst-case ICI on any subcarrier. Large
Ik value cause high bit errors in subcarriers. Therefore, to
reduce ICI effects, PICR should be minimized [29]. Here
we also define the PICR of a code C as the maximum PICR
over all codewords in C

PICR(C, ε) = max {PICR(c, ε) | ∀c ∈ C} . (6)

Note that the expression of PICR is similar to the peak-
to-mean envelope power ratio (PMEPR) that is consid-
ered as measure of the fluctuation of the OFDM signal2

PMEPR(c) = max0≤t≤1
|Sc(t)|2
‖c‖2 .

3.2 PICR geometric representation
We rewrite PICR(C, ε) as

PICR(C, ε) = max
0≤k≤N−1

J (k, ε), where J (k, ε) = max
c∈C

|Ik |2
|b0ck |2

.

(7)

We refer to J (k, ε) as the maximum interference-to-
signal ratio of code C on subcarrier k and focus on its
computation. The next theorem provides a geometric
interpretation of the PICR per subcarrier [40].

Theorem 3.1 Let C be a code of length N defined over
unit energy constellation Q. For each k, the value of J (k, ε)
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is determined by the distance between the codewords c ∈ C
and the points wk and jwk, where

wk = [
b∗

−k , . . . , b
∗−1, 0, b∗

1, . . . , b∗
N−1−k

]
. (8)

If C is a cyclic code then

PICR(C, ε) = J (0, ε). (9)

The value of J (0, ε) is determined by the distance
between the codewords c ∈ C and the two points w0 and
jw0.

Proof For any vectors x = (x0, x1, . . . , xN−1) and y =
(y0, y1, . . . , yN−1), let x.y = ∑N−1

i=0 xiy∗
i denote the inner

product of x and y. Using the identities

||x − y||2 = ||x||2 + ||y||2 − 2R(x.y),
||x − jy||2 = ||x||2 + ||y||2 − 2I(x.y),

we derive the following equalities

||c − wk||2 = ||c||2 + ||wk||2 − 2R(Ik),
||c − jwk||2 = ||c||2 + ||wk||2 − 2I(Ik).

where c =[c0, . . . , cN−1]. Without loss of generality, we
assume that the elements of Q have unit amplitude
(|cn|2 = 1, 0 ≤ n ≤ N − 1) then ||c||2 = N .3
Using properties 3 and 6 of the ICI coefficients, we get

||wk||2 = ∑N−1−k
l=−k,l �=0 |bl|2 = ∑N−1

l=1 |bl|2 = 1 − |b0|2.
Hence, we rewrite J (k, ε) as follows:

J (k, ε) =max
c∈C

|Ik |2
|b0|2

= max
c∈C

1
|b0|2

[(
R

(
Ik

))2 + (
I

(
Ik

))2] ,

=max
c∈C

(
N+1−|b0|2−||c − wk||2

)2 +
(
N + 1 − |b0|2 − ||c − jwk||2

)2

4|b0|2
.

(10)

Let c+ denote the codeword for which J (k, ε) is
attained, c+ maximizes

(
N + 1 − |b0|2 − ||c − wk||2

)2

+ (
N + 1 − |b0|2 − ||c − jwk||2

)2 ,

among all the codewords. So for each k, the value of
J (k, ε) is determined by the distance between the code-
words c ∈ C and the points wk and jwk.
The proof of the second part of Theorem 3.1 is based

on the definition of cyclic code. For every codeword c =
[c0, . . . , cN−1]∈ cyclic code C, the word [c−k , . . . , cN−k−1]
obtained by a cyclic shift of k components is again a code-
word. In addition, based on property 3 of the coefficients
bn, wk is obtained by k left cyclic shift of the element of
w0. If we assume that the PICR(C, ε) is reached for the
subcarrier k �= 0 and code ck+, then we have just to shift
the codeword ck+ by k to find a codeword c0+ and it is
easy to prove that the interference generated for the sub-
carrier 0 and code c0+ is equals to PICR(C, ε). Hence, the
PICR(C, ε) is also reached for the subcarrier k = 0.

The geometric interpretation of Theorem 3.1 is simple
but important because it explicitly states that the value
of PICR(C, ε) is determined by the distance between the
codewords c ∈ C and the points wk and jwk, k =
0, . . . ,N − 1. Furthermore for cyclic code, the value of
PICR is only function of the distance between the code-
words and the two points w0 and jw0. This representation
leads to an understanding of the value of PICR(C, ε) and
how to reduce it through phase-shift approach which is
described in the following Section 4.

4 PICR reduction

4.1 Phase-shift technique: illustration
Theorem 3.1 provides a geometric interpretation of the
value of PICR. Based on this interpretation, we propose
a simple approach that was originally proposed by Jones
and Wilkinson [41, 42] and further developed by Tarokh,
Jafarkhani and Paterson [43, 44] to reduce PMEPR. The
idea is to take a code with good BER performance and to
rotate each coordinate of the code by a fixed phase-shift
such that the maximum PICR evaluated for all codewords
is minimized. For the purpose of illustration, we assume
a unit amplitude constellation; thus all the codewords are
points on the N-dimensional complex sphere of radius√
N . The phase-shifts may reduce the PICR by reduc-

ing/increasing the distance between the codewords and
the points wk and jwk, k = 0, . . . ,N − 1. For cyclic code,
we just focus on the distance between the codewords and
the pointsw0 and jw0 only. Our design will shift the code-
words without changing the distance between them as
illustrated in Fig. 1. So it leaves the error-correcting prop-
erties of the code unchanged. In addition, we can use the
standard decoding algorithm of the original code after the
received signals are rotated back.
The reduction of interference for OFDM can now be

tackled as follows: For a given code C, the reducing phase-
shift problem is to find offset v =[v0, . . . , vN−1]∈ Z

N
2h such

that PICR(Cv, ε) is minimized, where Cv = {ejπv/2hc |c ∈
C}, h is an integer that set the resolution of the off-
set. Notice that, when h tends to infinity, we can con-
sider PICR(Cv, ε) as a continuous multi-variable function
of φ0 = 2πv0/2h, . . . ,φN−1 = 2πvN−1/2h. Because
of the continuity, the global minimum of this function
over [0, 2π ]×[0, 2π ]× · · ·×[0, 2π ] exists. But this func-
tionmay have various local minima and saddle points over
this compact set as well. There are various methods for
minimization of PICR(Cv, ε) in the literature, but they can
only guarantee convergence to a local minima. As rep-
resentative of these methods, we have used the gradient
method in our simulations. It is important to note that this
approach can be applied to binary and non-binary codes.
Then, we used the lower bound, derived in the following
section, to evaluate the optimality of our design.
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Fig. 1 Illustration of the geometric interpretation of PICR. We plot two
codewords on the sphere N = 3. By rotating the codewords over the
sphere (through phase-shift) we can change the distance between
the codewords and the two pointsw0 and jw0

4.2 Phase-shift technique: range
This section is dedicated to prove that phase-shift designs
are robust to CFO change. The optimum offset v mini-
mizes the PICR for a range of frequency offset (not for
a specific frequency offset value). To do so we need the
following proposition.

Proposition 4.1 Let C be a code of length N defined over
an equal energy constellation Q. Let ε1 and ε2 be small
normalized frequency offsets (|ε1| � 1 and |ε2| � 1). If
the offset v ∈ Z

N
2h minimizes PICR(Cv, ε1) that it minimizes

PICR(Cv, ε2) too.

Proof The proof is based on the fifth property of the
coefficients bn. We rewrite the PICR(C, ε2) as

PICR(C, ε2) = max
0≤k≤N−1,c∈C

|Ik(ε2)|2
|b0(ε2)ck|2

where Ik(ε2) is the inter-carrier interference on the kth
subcarrier and b0(ε2) is the ICI coefficient on the desired
signal evaluated for normalized CFO of ε2 as in Eq. (2).
Using the property 5 of the ICI coefficients, we have

PICR(C, ε2) = max
0≤k≤N−1,c∈C

|Ik(ε2)|2
|b0(ε2)ck|2 ,

� | sin(πε2)b0(ε2)|2
| sin(πε1)b0(ε1)|2 max

0≤k≤N−1,c∈C
|Ik(ε1)|2

|b0(ε1)ck|2 ,

= | sin(πε2)b0(ε2)
sin(πε1)b0(ε1)

|2 PICR(C, ε1).

Hence, the offset v ∈ Z
N
2h , that minimizes PICR(Cv, ε1),

minimizes PICR(Cv, ε2) too. Therefore, there is no need
to search for an offset v specific to each carrier frequency
offset. The simulation results will show in Section 6
that the optimum set of shifts, derived for ε = 0.1,
reduce the inter-carrier interference for a wide range of
CFO (0 < ε < 0.5).

5 Minimum PICR for phase-shifted binary code
Motivated by the previous design of phase-shifts, we
would like to know how much PICR reduction can be
achieved. In particular, in our framework, similar to that
of Schmidt’s [45], we consider the following question. For
a given binary code B, let Bv be the phase-shifted version
of B, what is

min
Bv∈Eh(B)

PICR(Bv, ε).

We provide a lower bound and an approximated lower
bound for this limit. The bounds are used to evaluate the
optimality of our design.

5.1 Main results
Our lower bound in the spirit of Schmidt’s [45] will be
expressed in terms of the covering radius of the binary
code B defined below.

Definition The covering radius of a code B ⊆ {1,−1}N
is defined to be

ρ(B) � max
x∈ZN

2

min
b+∈B+ wtH(b + x).

where each codeword b+ ∈ B+ is associated with a code-
word b ∈ B (where b+

i = bi+1
2 ), wtH(b) is the Hamming

weight of a binary vector b. We now state our main result.

Theorem 5.1 Given a binary code B ⊆ {1,−1}N with
covering radius ρ(B), then if h > 1

min
C∈Eh(B)

PICR(C, ε) ≥

1
8|b0|2

[
2N−2|b0|2−2

N−1∑

i=1
(1−|bi|)2−λ (N+2ρ(B))

]+2

,

where λ = bmax22h−2 sin2
(

π

2h

)
, bmax = maxi�=0|bi| and

[ x]+ = max(x, 0).
If |ε| � 1 then

min
C∈Eh(B)

PICR(C, ε) �

1
8|b0|2

[
2N−2|b0|2−2

N−1∑

i=1
(1−|bi|)2−λavg (N+2ρ(B))

]+2

,
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where λavg = bavg22h−2 sin2
(

π

2h

)
and bavg =

mean1≤i≤N−1|bi|.

The proof of Theorem 5.1 is provided in Appendix. The
preceding lower bound is a decreased function of h. The
corollary below states the asymptotic lower bound for
h → ∞.

Corollary 5.2 Given a binary code B ⊆ {1,−1}N with
covering radius ρ(B), then if h > 1

min
C∈E∞(B)

PICR(C, ε) ≥

1
8|b0|2

[
2N−2|b0|2−2

N−1∑

i=1
(1−|bi|)2−bmax

π2

4
(N+2ρ(B))

]+2

.

If |ε| � 1 then

min
C∈E∞(B)

PICR(C, ε) �

1
8|b0|2

[
2N−2|b0|2−2

N−1∑

i=1
(1−|bi|)2−bavg

π2

4
(N+2ρ(B))

]+2

.

Proof Similarly to [45], we used
limh→∞ 22h−2 sin2

(
π

2h

)
= π2

4 .

5.2 Examples
5.2.1 Non-redundant BPSK signaling
The code {1,−1}N is a binary code without redundancy,
ρ({1,−1}N ) = 0, Theorem 5.1 and Corollary 5.2 imply
the following.

Corollary 5.3 For h > 1, the PICR of a 2h-ary PSK code
equivalent to {1,−1}N is at least

min
C∈Eh

(
Z
N
2

)PICR(C, ε) �

1
8|b0|2

[
2N − 2|b0|2 − 2

N−1∑

i=1
(1 − |bi|)2 − λ avg N

]+2

,

and

min
C∈E∞

(
Z
N
2

)PICR(C, ε) �

1
8|b0|2

[
2N−2|b0|2−2

N−1∑

i=1
(1−|bi|)2 − b avg

π2

4
N

]+2

.

For N = 16 and N = 64 the PICR approximated lower
bounds are 0.10 and 0.22, respectively. Since the PICR for
non-redundant binary code are 0.19 (N = 16) and 0.50
(N = 64), the maximum PICR reduction of the proposed
phase-shift designs is 3 dB for non-redundant code.

5.2.2 Reed-Muller codes
In the following we inspect codes that are equivalent to
first order Reed-Muller codes of length 2m, RM(1,m).

Corollary 5.4 For h > 1 and N = 2m, the PICR of a
2h-ary PSK code equivalent to RM(1,m) is at least

min
C∈Eh(RM(1,m))

PICR(C, ε) � 1
8|b0|2

[
2N − 2|b0|2 − 2

N−1∑

i=1
(1 − |bi|)2

−λavg
(
N + (2m − 2m/2))

)]+2
,

and when h = ∞
min

C∈E∞(RM(1,m))
PICR(C, ε)� 1

8|b0|2
[
2N − 2|b0|2 − 2

N−1∑

i=1
(1 − |bi|)2

−bavg
π2

4
(
N+(2m − 2m/2))

)]+2

.

Proof It was proved in [46] that

2m−1 − 2(m−1)/2 ≤ ρ(RM(1,m)) ≤ 2m−1 − 2m/2−1.

5.2.3 Binary primitive BCH codes
Next we present the lower bounds on the PICR of codes
that equivalent to binary primitive t-error-correcting
BCH codes, B(t,m).

Corollary 5.5 For h > 1 and N = 2m − 1, the PICR
of a 2h-ary PSK code equivalent to t-error-correcting BCH
codes, B(t,m) is at least

min
C∈Eh(B(t,m))

PICR(C, ε) �

1
8|b0|2

⎡

⎣2N − 2|b0|2 − 2
N−1∑

i=1
(1 − |bi|)2 − λavg (N + (4t − 2)))

⎤

⎦
+2

,

and when h = ∞
min

C∈E∞(B(t,m))
PICR(C, ε) �

1
8|b0|2

⎡

⎣2N−2|b0|2−2
N−1∑

i=1
(1 − |bi|)2 − bavg

π2

4
(N + (4t − 2)))

⎤

⎦
+2

.

Proof The authors of [47] proved that there exists anmo
depending on t such that ρ(B(t,m)) = 2t − 1 for all m ≥
mo.

6 Numerical results
The numerical results presented in this section aim to
evaluate the ICI reduction performance of the proposed
phase-shift approach. We considered a normalized fre-
quency offset of ε = 0.1 and two well-known codes
extended Bose-Chaudhuri-Hocqenghem (BCH) and Reed
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Table 2 Optimum phase shifts for BCH(64,10) in radians

φ0 =2.4683 φ1 = 1.7502 φ2 = 4.4962 φ3 = 4.0882 φ4 = 0.1253 φ5 =2.9330 φ6 =5.3401 φ7 =2.2695

φ8 =4.2003 φ9 =4.0068 φ10 =6.2288 φ11 =5.6747 φ12 =5.3153 φ13 =1.0958 φ14 =4.5622 φ15 =6.0023

φ16 =3.2120 φ17 =1.5937 φ18 =4.9119 φ19 =3.7611 φ20 =4.1274 φ21 = 5.8449 φ22 =5.5075 φ23 =5.4723

φ24 =4.0787 φ25 =4.3756 φ26 =4.4991 φ27 =3.1733 φ28 =3.6295 φ29 = 2.6383 φ30 =5.2078 φ31 =5.7397

φ32 =3.4149 φ33 =0.9170 φ34 =0.8856 φ35 =5.4017 φ36 =5.2185 φ37 =2.2959 φ38 =0.6368 φ39 =1.1671

φ40 =3.1718 φ41 =2.9789 φ42 =5.0463 φ43 =5.1208 φ44 =0.9384 φ45 =3.8918 φ46 =2.3587 φ47 =2.3106

φ48 =2.7175 φ49 =3.2082 φ50 =0.9428 φ51 =1.0826 φ52 =5.4491 φ53 =5.7840 φ54 =4.6229 φ55 =1.2202

φ56 =3.5798 φ57 =0.1929 φ58 =2.7888 φ59 = 5.5207 φ60 = 1.8680 φ61 =4.5057 φ62 =0.4838 φ63 =3.2663

Muller (RM). We note that Pyndiah [48] has proposed
a simple soft-input soft-output (approximated MAP)
decoder for BCH codes, based on Chase algorithm,
that gives excellent BER performance. RM codes achieve
capacity on erasure channels and reduce PMEPR [49, 50].
For the BPSK case, we have optimized the phase-shifts

by finding a local minima of PICR(C, ε). Once the optimal
phase-shifts were computed, they were rounded to 8-PSK,
and 16-PSK phase-shifts. The PICR was then calculated
for the rounded phase shifted. The optimal set of shifts
for BCH(64,10) are given in Table 2. The reduction in
PICR is 2.56 dB, it decreases to 1.99 and 1.39 dB for 16-
PSK and 8-PSK, respectively. The optimal set of shifts for
RM(1,6) are given in Table 3. The reduction in PICR is
7.10 dB; it decreases to 6.28 and 5.86 dB for 16-PSK and 8-
PSK, respectively. The numerical results show that a fixed
phase-shift applied to code coordinates reduces the ICI,
and that most of the gain can be obtained by using 8-
PSK and 16-PSK type phase-shifts. The phase-shift design
reduce the PICR from 0.255 (BCH) and 0.519 (RM) to 0.14
and 0.098, respectively. These values approaches the lower
bound in Corollary 5.4 and Corollary 5.5.
Furthermore, we use the same set of phase-shifts with

various CFO (0 < ε < 0.5). The PICR results shown in
Figs. 2 and 3 prove that the optimum set of shifts, derived
for ε = 0.1, reduce the inter-carrier interference for a
wide range of CFO. For the purpose of comparison, we
also plot the PICR with a self-interference cancellation
that reduces the transmission-rate by half [18]. In fair-
ness, we implemented the self-cancellation technique over

the non-redundant data sequences (no channel coding).
The simulation results prove that our simple phase-shift
designs are very competitive - especially when applied
to codes with high large covering radius like RM codes.
To illustrate the impact of our phase-shift technique on
the bit error rate (BER), we consider RM(1,6) code and
BPSK modulation. The BER vs. signal to noise ratio (SNR)
performance with and without phase-shifts are shown
in Fig. 4. Note that the phase-shift technique improves
the performance at BER 10−6 by 10 dB for normalized
frequency offset ε = 0.1.

7 Conclusions
In this paper, we proposed an interference reduction
scheme to mitigate the effects of CFO in OFDM system.
We provided a geometrical interpretation of PICR(C, ε),
the PICR of C. To reduce PICR, we focused on a simple
phase-shift approach. The idea is to take a code with good
BER performance and to rotate each coordinate of the
code by a fixed phase-shift such that the maximum PICR
taken over all codewords is minimized. This shift leaves
unchanged the error-correcting properties of the code. In
addition, we can use the standard decoding algorithm of
the original code after back rotation of the received sig-
nals. Simulation results show that a reduction of 7 dB can
freely be obtained.
We also study the fundamental limit of the proposed

technique by providing an approximated lower bound of
the PICR. The bound is applied to some codes: non-
redundant binary code, BCH codes, and Reed-Muller

Table 3 Optimum phase shifts for RM(1,6) in radians

φ0 =1.5620 φ1 =4.5390 φ2 =3.5491 φ3 =0.3789 φ4 =2.9522 φ5 =4.9135 φ6 =1.9776 φ7 =3.7244

φ8 =3.7291 φ9 =5.2304 φ10 =3.8296 φ11 =2.8186 φ12 =5.5612 φ13 =4.4629 φ14 =3.4743 φ15 =6.1346

φ16 =4.7435 φ17 =1.3264 φ18 =3.1416 φ19 =0.1649 φ20 =4.9018 φ21 =2.6437 φ22 =5.8063 φ23 =0.9283

φ24 =4.0979 φ25 =3.9276 φ26 =5.6677 φ27 =5.7450 φ28 =3.8378 φ29 =1.3179 φ30 =4.9345 φ31 =5.4689

φ32 =0.0817 φ33 =3.2805 φ34 =2.8142 φ35 =5.0262 φ36 =5.0639 φ37 =1.0568 φ38 =0.8457 φ39 =2.9594

φ40 =5.7340 φ41 =5.5270 φ42 =3.2478 φ43 =3.5318 φ44 =1.1401 φ45 =1.7986 φ46 =2.3697 φ47 =0.3248

φ48 =4.5588 φ49 =1.6792 φ50 =0.0914 φ51 =6.2392 φ52 =1.8721 φ53 =1.1146 φ54 =3.4850 φ55 =6.2436

φ56 =1.3990 φ57 =5.3068 φ58 =0.0079 φ59 =6.0174 φ60 =4.3187 φ61 =4.3175 φ62 =6.1484 φ63 =5.8044
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Fig. 2 PICR of 2h-ary PSK code equivalent to BCH(64,10)

codes. It is demonstrated that our phase-shift designs
approach our bound.

Endnotes
1One more approach uses signal processing, such as

time and frequency equalization, to reduce the sensi-
tivity of OFDM systems to frequency offset. Although

efficient, signal processing techniques usually increase the
complexity of the transceiver (see [16] and references
therein).

2 The authors of [29] have noted that despite the similar-
ities between PICR and PMEPR, the PICR problem differs
from PMEPR issue in several ways.

Fig. 3 PICR of 2h-ary PSK code equivalent to RM(1,6)
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Fig. 4 BER vs. SNR of RM(1,6) code with and without phase-shifts

3 In the case of non-uniform energy constellation, like
QAM, J (k, ε) will be determined for each energy level
and then minimized over all the levels.

Appendix
Proof of Theorem 5.1
The proof follows along the lines of [45]. Based on Eq. (7),
we have

PICR(C, ε) ≥ J (0, ε) (11)

Using the following inequality

x2 + y2 = 1
2

[
(x + y)2 + (x − y)2

]

≥ 1
2
(x + y)2, x, y ∈ R

and Eq. (10), we get

PICR(c, ε) ≥ 1
8|b0|2

[
2N+2 − 2|b0|2 − ||c − w0||2 − ||c − jw0||2

]2

(12)

We need some preliminaries in order to prove
Theorem 5.1. If we assume that elements of C have unit
energy, It is straightforward to establish that

||c − w0||2 = 1 +
N−1∑

i=1
(1 − |bi|)2 + 4

N−1∑

i=1
|bi| sin2

(∠bi − ∠ci
2

)
(13)

and

||c − jw0||2 = 1 +
N−1∑

i=1
(1 − |bi|)2 + 4

N−1∑

i=1
|bi| sin2

(∠bi − ∠ci
2

+ π

4

)

(14)

where |x| and ∠x are the amplitude and the angle of x,
respectively. Let Z2h denote the ring of integers modulo
2h. We define ci and bi ∈ Z2h as: 2πci

2h � ∠ci and 2πbi
2h �

∠bi. Note that when h tends to the infinity the phases can
be approximated with arbitrary high probability.
Schmidt showed in [45] that

sin2
(
w

π

2h

)
≤ 2h

4
sin2

(
π

2h

)
w

for h > 1 and w = 0, 1, . . . , 2h−1.
Based on this result, we get

||c − w0||2 ≤ 1 +
N−1∑

i=1
(1 − |bi|)2 + 2h sin2

(
π

2h

)

N−1∑

i=1
|bi|min

(
bi − ci, 2h − bi + ci

)
,

(15)

and

||c − jw0||2 ≤ 1 +
N−1∑

i=1
(1 − |bi|)2 + 2h sin2

(
π

2h

)

N−1∑

i=1
|bi|min

(
bi−ci−2h−2, 2h − bi + ci + 2h−2

)
.

(16)
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We now use the previous results to derive a lower bound
of the PICR:

PICR(c, ε)≥ 1
8|b0|2

[
2N−2|b0|2−2

N−1∑

i=1
(1 − |bi|)2

−2h|bmax|sin2( π

2h
)
(
wtL

(
b−c

)
+wtL

(
b−c−2h−2

))]2

(17)

where bmax = max1≤i≤N−1|bi|, b =[ b0, . . . , bN−1], c =
[ c0, . . . , cN−1] and wtL(x) is Lee weight of the vector x =
[ x0, x1, . . . , xN−1] defined as

wtL(x) �
N−1∑

i=0
min{xi, 2h − xi}. (18)

Note that this lower bound is not always tight. There-
fore, since all the coefficients bk slowly vary with k, bk+1 �
bk (if |ε| � 1), we derived this approximated lower bound

PICR(c, ε) � 1
8|b0|2

[
2N−2|b0|2 − 2

N−1∑

i=1
(1 − |bi|)2

−2h|bavg|sin2
(

π

2h

)(
wtL

(
b−c

)
+wtL

(
b−c−2h−2

))]2

(19)

where bavg = mean1≤i≤N−1|bi|. The resulting values are
very good approximations to the PICR lower bound yet
analytically tractable.We use Definition 12 and Lemma 13
in [45] to derive

wtL
(
b−c

)
+wtL

(
b − c − 2h−2

)
= 2h−2N+2h−1ρ(B),

(20)

where ρ(B) is covering radius of the binary code B ⊆
{1,−1}N . We replace Eq. (20) in Eqs. (17) and (19) to
complete the proof.
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