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Abstract

This article addresses the spectrum efficiency study of nested sparse sampling and coprime sampling in the
estimation of power spectral density for QPSK signal. The authors proposed nested sampling and coprime sampling
only showed that these new sub-Nyquist sampling algorithm could achieve enhanced degrees of freedom, but did
not consider its spectrum efficiency performance. Spectral efficiency describes the ability of a communication system
to accommodate data within a limited bandwidth. In this article, we give the procedures of using nested and coprime
sampling structure to estimate the QPSK signal’s autocorrelation and power spectral density (PSD) using a set of sparse
samples. We also provide detailed theoretical analysis of the PSD of these two sampling algorithms with the increase
of sampling intervals. Our results prove that the mainlobe of PSD becomes narrower as the sampling intervals increase
for both nested and coprime sampling. Our simulation results also show that by making the sampling intervals, i.e., Ny

and N, for nested sampling, and P and Q for coprime sampling, large enough, the main lobe of PSD obtained from
these two sub-Nyquist samplings are much narrower than the original QPSK signal. That is, the bandwidth B
occupancy of the sampled signal is smaller, which improves the spectrum efficiency. Besides the smaller average rate,
the enhanced spectrum efficiency is a new advantage of both nested sparse sampling and coprime sampling.
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1 Introduction

In recent years, spectrum efficiency has gained renewed
interest in wireless communication system. From [1], we
know that the performance of a particular communication
system is often measured in terms of spectral efficiency
(or bandwidth efficiency). Spectral efficiency describes the
ability of a communication system to accommodate data
within a limited bandwidth. It reflects how efficiently the
allocated bandwidth is utilized and defined as the ratio
of the throughput data rate per Hertz in a given band-
width. Letting R to be the data rate in bits per second, and
B the bandwidth occupied, the bandwidth efficiency 7 is
expressed as

= %bit/S/Hz 1)

If we apply Shannon’s capacity to AWGN non-fading
channel, i.e., C = Blog,(1 + %), and with the knowledge
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that all communication rates are below channel capacity
R < C [2], we can get the fundamental upper bound [1]
on achievable spectrum efficiency, for an arbitrarily small
probability of error, where % is the signal to noise ratio.

=S g, (142 @)
nmax—B—OgZ N

From (1), if we hope to improve the spectrum efficiency,
we should either increase the data rate R or efficiently
use the bandwidth B. Lots of efforts have been made to
increase the spectrum efficiency. For example, power and
spectral efficient family of modulations for wireless com-
munication systems were introduced in [3]. The author
in [4] proposed a high spectrum efficient multiple access
code. Cognitive radios have been proposed as a method
to efficiently reuse the licensed limited spectrum. And
in general, the spectral efficiency can be improved [5]
by frequency re-use, spatial multiplexing, OFDMA, or
some radio resource management techniques such as effi-
cient fixed or dynamic channel allocation, power control,
link adaptation etc. As stated in [6], time is also a fac-
tor in determining overall spectrum efficiency, because
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most applications do not use spectrum on a continu-
ous basis and users typically share resources on a time
basis.

A new approach to super resolution spectral estimation
using nested sparse sampling is provided by [7,8]. In [8],
a two user case of sparse sampling, coprime sampling is
also introduced. The authors has already proved that these
two new sub-Nyquist sampling algorithms could achieve
enhanced degrees of freedom. While in this article, we will
show that both nested sparse sampling and coprime sam-
pling are much more spectrum efficiency;, i.e., they occupy
much narrower bandwidth than the original non-sampled
signal.

Traditional sampling methods are based on Nyquist rate
sampling, which will have poor efficiency in terms of both
sampling rate and computational complexity. Nowadays,
more and more techniques are proposed to overcome the
Nyquist sampling. Compressive sensing [9] provides us a
new point of view, which could only use much less samples
to perfectly recover the original signal at a high com-
pression ratio. The authors give a new idea of coprime
sampling in [8], which uses two uniform sampling to
estimate the autocorrelation for all lags.

Differently, nested sparse sampling is an non-uniform
sampling, using two different samplers in each period.
Although the signal is sampled sparsely and nonuniformly
atl </ < NiT and (N7 + )mT,1 < m < N, for one
period, the autocorrelation R.(7) of the signal x.(¢) could
be estimated at all lags © = kT, k, /, and m are all integers.
Hence, nested sparse sampling can be used to estimate
power spectrum even though the samples in the time
domain can be arbitrarily sparse [8]. While coprime sam-
pling uses two uniform samplers, with sample spacings
PT and QT, respectively, where P and Q are coprime inte-
gers. Similar as nested sparse sampling case, the authors in
[8] proved that the estimates of all lags of autocorrelation
R.(kT) could be obtained from these two sets of samples
of the signal x.(¢), both of the samples are taken at much
smaller rates than Nyquist sampling rate, which results in
a much less time consumption.

In this article, we give the principle of nested sparse
sampling and coprime sampling first and provide the pro-
cedures of using these two sparse sampling structures
to estimate the QPSK signal’s autocorrelation and power
spectral density (PSD). We give the theoretical analysis of
how these two sparse sampling methods effect the power
spectral density as well. Our simulation results also show
that with if we choose the sampling spacings larger, the
main lobe of PSD obtained from these two sampling will
be much narrower than the original QPSK signal. That
is, besides the much less time consumption, the occupied
bandwidth B in expression (1) is smaller, which makes the
spectrum efficiency higher. Besides the smaller average
rate, the increased spectrum efficiency is a new advantage
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of these two sparse sampling algorithms, which is studied
for the first time.

The rest of this article is organized as follows. In
Section 2, we give a brief overview of nested sparse
sampling. An introduction of coprime sampling is in
Section 3. Spectrum estimation based on the difference
sets obtained from both nested sampling and coprime
sampling structures is detailed in Section 4. In Section 5,
we give the theoretical analysis of these two sparse sam-
pling and how they will effect the power spectral den-
sity. In Section 6, we provide the numerical results of
the power spectral density estimation. Conclusions are
presented in Section 7.

2 Nested sparse sampling
The nested array was introduced in [7] as an effective
approach to array processing with enhanced degrees of
freedom [10]. The time domain autocorrelation could also
be obtained from sparse sampling with nested sampling
structure [11]. And the samples of the autocorrelation
can be computed at any specified rate, although the sam-
ples from this nested sparse sampling are sparsely and
nonuniformly located.

In the simplest form, the nested array [11] has two lev-
els of sampling density, with the level 1 samples at the N
locations and the level 2 samples at the N> locations.

1 <! < Nj, forlevel 1

(N1 +1)m,1 < m < Ny, for level 2

Figure 1 shows an example of periodic sparse sampling
using nested sampling structure with N; = 3 and N, = 5.
The cross-differences are given by

k=WN1+Dm—L1<m=<Npy,1<I<N; (3)

The cross-differences [11] are in the following range with
the maximum value (N7 + 1)N; — 1, except the integers
and the corresponding negated versions shown in (5).

[N+ DNz —1] = k <[ (N1 + DNy — 1] (4)

N1+ 1D,2(N1+1),..., \Na —D((N1 + 1) (5)
For example, consider the example in Figure 1, where

1 <m < 5and 1 < [ < 3, the cross differences k =
(N7 + 1)m — [ will achieve these values

1,2,3,0,56,7,0,9,10,11, (), 13,14, 15, (),17,18,19

with 4, 8,12, 16 missing.

Besides these integers, the difference 0 is also missing,
for the reason that m and / are nonzero. While, we notice
that the self differences among the second array could
cover all of the missing differences, as shown

(N1 + 1)(my — my), 1 < my,my < Np (6)
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Figure 1 Nested sampling with N; = 3, Ny = 5.
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The difference-co-array could be obtained from the
cross-differences and the self-differences, which is a filled
difference co-array as shown in (4). This means that using
nested array structure, with sparse samples, we could
obtain the degrees of freedom as

2[(N1 + DNy — 1] +1 =2(N1 + )N, — 1 (7)

Using the above principle, we could get a sparse
sampling using nested sampling structure as shown in
Figure 1. We have two levels of nesting, with Nj level-
1 samples and N level-2 samples in each period, with
period (N7 4+ 1)N;. This shows that nested sampling is
non-uniform and the samples obtained are very sparse.

Therefore, in (N1+1)N, T seconds, there are totally N1+
N, samples. The average sampling rate is

N1+ N> 1 N 1 1
~ < =
(N1 + 1)N, T NiT NT T

f;,nested = 8)
Here, T = 1/fu, fu = 2fmax is the Nyquist sampling
frequency, which is greater than twice of the maximum
frequency. As the Nyquist sampling rate is 1/7, the aver-
age sampling rate of nested sampling is smaller than the
conventional Nyquist sampling rate.

If we set N1 and Ny larger, the average sampling rate
fs would be arbitrarily smaller. In the theoretical and
numerical results sections, we will show that with N7 and
N; becoming larger, the bandwidth of the power spec-
trum density goes narrower, i.e., the spectrum gets more
efficiently used.

3 Coprime sampling

Different with nested sampling, coprime sampling
involves two sets of uniformly spaced samplers as shown
in Figure 2.

The coprime sampling uniformly sample the wide-sense
stationary (WSS) process x.(f) using two sub-Nyquist
samplers, with sample spacing PT and QT, respectively,
where P and Q are coprime integers with P < Q. 1/T Hz

is the Nyquist rate for a bandlimited process, i.e., 1/T =
2fmax> fmax being the highest frequency.

x(n) = x.(nT) ©)
Consider the product

x(Pn1)x* (Qna) (10)

where x(Pn1) and x(Qny) comes from the first and the
second sampler. Set the difference as
k= Pl’ll — Q}’lz (11)
The authors in [11] have shown that k can achieve any
integer value in the range 0 < k < PQ — 1, if n; and n in
theranges0 <n; <2Q—1land0<my <P —1.
For coprime sampling, the two samplers collect P + Q
samples in PQT seconds, the average sampling rate is
P+Q 1 11

f;,coprime = PQT = ﬁ + @ < ? (12)
Same as in nested sampling, T = 1/f,, fu > 2fmax is the
Nyquist sampling frequency. We could notice the average
sampling rate of coprime sampling is much smaller than
the conventional Nyquist sampling rate of 1/7.

Similar as stated in nested sampling, if we set P and
Q larger, the average sampling rate would be arbitrar-
ily smaller. We will show that with P and Q becoming
larger, the bandwidth of the power spectrum density
goes narrower.

7 AN

x.(f) [ yer )

2P 3P 4P 5P 6P

~—

l
[ 1 QT —wx(0n) l J> 2|Q 3‘9 4|Q 5|Qm’

.

/
AN S/

Figure 2 Coprime sampling in the time domain.
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4 Power spectral density estimation based on
nested & coprime sampling

In this part, we will detail the estimation of PSD using
nested and coprime sampling structure. In signal and sys-
tems analysis, the autocorrelation plays a very important
role. The autocorrelation function of a random signal
describes the general dependence of the values of the sam-
ples at one time on the values of the samples at another
time.

The autocorrelation [12] of a real and stationary signal
x.(t) is defined by this averaging

Re(t) = E[x:(0)x; (¢t — 1)] (13)

R.(7) is always real-valued and an even function with a
maximum value at T = 0.

For sampled signal, define x(n) = x.(nT), for some
fixed spacing 7. For the autocorrelation samples, R(k) =
R (kT), where R.(-) as shown in (13). Therefore,

R(k) = E[xc(nT)x;((n — k)T)] = E[x(n)x™ (n — k)]
(14)

R(k) can be computed from samples of x.(¢) taken at
an arbitrarily lower rate using nested or coprime sparse
sampling.

And here we only list some important autocorrelation
properties which will be used in this article:

(1) Maximum value: The magnitude of the
autocorrelation function of a wide sense stationary
random process at lag m is not greater than its value
atlagm =0, i.e,

R(0) =| R(k) |,k #0 (15)
(2) The autocorrelation function of a periodic signal
is also periodic.

(3) The autocorrelation function of WSS process is a
conjugate symmetric function of k:

R(k) = R*(—=k) (16)

The power spectral density (PSD) describes how the
power of a signal or time series is distributed with fre-
quency. The PSD is the Fourier transform of the autocor-
relation function of the signal if the signal is treated as a
wide-sense stationary random process [13]. Therefore, the
Fourier transform of R (7) is the PSD S(f),

(17)

S() :/ R.(t)e 21747

S(f) is a real-valued, nonnegative function. Definition
(17) shows that S(—f) = S(f), i.e., the PSD is an even
function of frequency f.
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Taking discrete Fourier transform (DFT) of these lags of
autocorrelation values, we could obtain the power spectral
density as

N-1 ,
Stm) =Y Rye "N k=0,1,... ,N -1
k=0

(18)

Next, we will separately describe how nested sam-
pling and coprime sampling estimate the autocorrelation
function.

4.1 For nested sampling

For the samples obtained from nested sparse sampling,
consider the product x(n;)x*(n2), with #; and ny belong
to the first period in Figure 1. We will get the samples at
the following locations

1,2,...,Ni, (N1 + 1),2(N1 + 1),...,No(N1 + 1) (19)

The set of differences n; — ny are exactly the difference-
co-array described in (4), that is, n; — np will achieve all
integer values in (4).

We can see that although the signal is sampled sparsely
and nonuniformlyat1 </ < Njand (N1 + 1)m,1 <m <
N, for one period, the autocorrelation R.(7) of the signal
xc(t) could be estimated at all lags t = k.

An estimate of the autocorrelation samples for all
k could be obtained [11] by averaging the products
x(n1)x*(ny) over L periods,

L—-1
R(k) = % > x(mx*(n— k) (20)

=0

4.2 For coprime sampling

As P and Q are coprime, there exist integers 0 < n; <
2Q —1and 0 < ny < P — 1, such that the difference in
Equation (11) can achieve any integer value k = Pn; —Qny
in the range of 0 < k < PQ — 1. Since k = P(n; + QI) —
Q(ny + PI) for any [, we can average [ to obtain an estimate
of the autocorrelation R(k), that is,

L-1

A 1
R(k) = I > x(Pm + QD)x* (QUny + PI))

=0

(21)

5 Theoretical analysis
As nested sampling and coprime sampling are similar, in
this part, I will use nested sparse sampling to state the
theoretical analysis.

From the property of DFT, we know that, if R(k) are real,
then S(N — n) and S(n) are related by

S(N — n) = S(n) (22)

forn =0,1,...,N — 1, where §(n) denotes the complex
conjugate. This also means that the component S(0) is
always real for real data.
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QPSK Nested Sampling Estimated Autocorrelation function
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Figure 3 Nested sampling estimated autocorrelation.
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In our simulation, we always consider the amplitude of
the PSD, which indicates that

ISIN — n)| = |S(n)| (23)

This gives the reason of why the PSD figure is always
symmetric.

From the simulation, we observe the absolute values of
the autocorrelation f?(k) are the same for the QPSK signal,

which obtain positive or negative of a fixed value as shown
in Figure 3 for different N1 and N3 of nested sampling, and
Figure 4 for different P and Q of coprime sampling. This
could make the calculation of the PSD easier. In our anal-
ysis, for simplicity, we assume all the R(k) have the same
absolute value R, i.e, R = |[R(k)] = R(0) = —R(1) =
f€(2) = .... Therefore, we set IAQ(/() = (=1)KR. The esti-
mated autocorrelation satisfies those properties we stated

QPSK Coprime Estimated Autocorrelation function

50 T

407

30

20

10

Autocorrelation

——— P=7,Q=13
——— P=11,0=13 |

50

Figure 4 Coprime sampling estimated autocorrelation.

100 150
lags
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before, ie, R(0) > |R(k),k # 0, and as the QPSK
signal we used is periodic, the estimated autocorrelation
function R(k) is also periodic.

Let’s see how the PSD changes with the increase of
N; and Nj. As stated in the principle of nested sparse
sampling, k falls in the range of (4). Here we only
use those positive, i.e, kK = 0,1,...,(N; + 1)No — 1,
that is, N = (N1 + 1)Na. We could get the PSD
by taking the Fourier transform of the estimated
autocorrelation,

N-1 )
Stm) =Y R(kye ¥k

k=0

N-1 )
— Z (—1)kRe_iWﬂk”
k=0

N-1
=RY (e (24)

k=0

As stated in the principle of nested sparse sampling, k

falls in the range of (4), N = (N7 4+ 1)N,. For coprime
sampling, we show that k = P(n; + Q/) — Q(nz + PI) can
achieve any integer value in the range of 0 < k < PQ — 1,
i.e., in this case N = PQ. N could either be even or odd.
For example, for nested sampling, if N| = 2 and N = 5,
then N = (N7 + 1)Ny = 15 is odd, while if N; = 3 and
N = 5,then N = (N] + 1)N, = 20 is even. For coprime
sampling, if P = 2, Q = 5, then N = PQ = 10 is even,
while if P = 3, Q = 5, then N = PQ = 13 is odd. First, we
assume N = (N7 + 1)N, is odd,

Tn

N-1 )
S(n) =R Z(—e*"T)k
k=0

1 +e‘i2]TT”N
= R :2mn
14+e N

e—iﬂn(einn +e—irm)
_jEn Tn _jxn
e'N(eN +e'N)
_R. e*i””¥ cos(mn)
cos (%)

Andif N = (N7 + 1)N; is even,

(25)

2n

N-1
Sy =RY (- ")k
k=0

:2mn
1—e NN
_j2an
1+e'N
e—lrrn(emn _ e—lﬂ}’l)

e iV (ei%n + e_i%)

N-1 i sin(mn
N Esin(rn)

—R. —inn
¢ cos (%)

(26)
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The corresponding amplitude of the PSD is

sin(mwn)

cos(mn)
cos (%”)

|S(n)| =R o5 (%) (N odd), or, R

(N even)

(27)

We could draw these two expressions in (27) as shown
in Figures 5, 6, 7, and 8. It’s obvious that no matter N is
odd or even, with the increase of N, the mainlobe becomes

narrower and the number of sidelobes increases. In next
paragraph, we will prove the central of the mainlobe
represents the central frequency.

In the simulation, if we take N-point fast Fourier trans-
form (FFT), we will get N PSD values. Let f, represents
the Nyquist sampling frequency, f, = 2f. (f; is the car-
rier frequency), using f = f, - (0 : N — 1)/N, we could
map these PSD values to the frequency. It is obvious that
when n = N/2, the PSD gets its central value of S(%) at

f= %f,, = fz. This could be represent as
N-1
N S 2N
() Erncn
k=0
N-1 ‘
— R Z (_e—lﬂ)k
k=0

N-1
=R Z 1=NR (28)
k=0

From this derivation, we also notice that with the
increase of N, besides the mainlobe becomes narrower,
the central value of the PSD gets higher, which results in a
higher spectrum efficiency.

In the numerical results part, we will show that with
the same sampling spacings chosen for both nested and
coprime sampling, i.e., N1 = P, N, = Q, we could achieve
N = (N7 + 1)N; for nested sampling will be larger than
that of N = PQ for coprime sampling, which will result in
a better spectrum efficiency for nested sampling.

6 Numerical results

This section presents some numerical results for the auto-
correlation and power spectrum density estimation using
nested sampling structure. We use QPSK modulated sig-
nal with carrier frequency f, = 400 Hz, which could be
expressed as [1]

2E, b4
sQpsk(t) = ./ TS cos |:27cht + (- 1)5]
N

where T is the symbol duration. In our simulation, we set
E;=1and T; = 1/50.

(29)
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N=(N1+1)N2=15

SD

N1=2,N2=5 ||

Figure 5 PSD, N = 15.

10 15

The power spectrum density [1] of a QPSK signal using
rectangular pulses can be expressed as

E | (sinm(f — )T \"
Pqpsk (f) = e [(5127&(]: ﬂ{;s )

(30)
N (sinn(—f —ﬁ)Ts)2
T(~f —fo)Ts

Figure 9 shows the PSD of a QPSK signal for rectangular
and raised cosine filtered pulses. The x-axis refers to the
frequency in Hz, and the y-axis are the normalized power
spectral density in dB. It can be observed the PSD centers
at f, = 400 Hz with symmetric sidelobes on both sides.

If we zoom in Figure 9, as shown in Figure 10, we could
notice bandwidth for the original QPSK signal is about
416 — 384 ~ 32 Hz.

N=(N1+1)N2=25

301

25

20

SD

o 15

10

N1=4,N2=5 ||

Figure 6 PSD, N = 25.
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N=(N1+1)N2=18
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Figure 7 PSD, N = 18.

The estimated autocorrelation using nested sampling
and coprime sampling structures are plotted in Figures 11
and 12. In the simulation, for nested sampling, we use
N; = 7, Ny = 11, and L = 10. Therefore, IAQ(k) can be
estimated for | k |< (N1 + 1)Ny — 1. For each period, we
totally get (N1 +1)N3 = (74 1) x 11 = 88 samples. While
for coprime sampling, we set P = 7 and Q = 11, for each
period, we get PQ =7 x 11 = 77 lags of R(k).

Using the relationship of autocorrelation and the PSD
described in Section 3, we could obtain the estimated PSD
using nested sampling structure for this QPSK signal as
shown in Figure 13. In the simulation, we use 1024 point
fast Fourier transform and normalize the PSD. We can see
that the estimated PSD is also centered at f, = 400 Hz with
symmetric sidelobes on both sides. As stated in Section 3,
we can see the PSD is an even function.

N=(N1+1)N2=28

251

201

PSD

15

N1=3,N2=7 ||

Figure 8 PSD, N = 28.
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Power Spectral Density of QPSK signal
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Frequency, Hz

Figure 9 PSD of the QPSK signal.

Similarly, if we zoom in this PSD around the central fre-
quency f;, in Figure 14, we could find the main lobe, i.e.,
the bandwidth occupied is approximately 409 — 391 ~
18 Hz, which is much narrower than that 32 Hz of the
PSD of the original QPSK signal. Hence, the spectrum
efficiency is improved in the estimation using nested sam-
pling structure.

We could also get the estimated PSD using coprime
sampling structure for this QPSK signal as shown in
Figure 15. In the simulation, we use 1024 point fast
Fourier transform and normalize the PSD. We can
see that the estimated PSD is also an even function
centered at f. = 400Hz with symmetric sidelobes on
both sides.

Power Spectral Density of QPSK signal

0 \ \

Normalised PSD, [dB]

-50 I I I
380 385 390 395

400 405 410 415 420

Frequency, Hz

Figure 10 Zoom in the main lobe of PSD for QPSK signal.
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QPSK Nested Sampling Estimated Autocorrelation function
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Figure 11 Nested sampling estimated autocorrelation of the QPSK signal, when N; = 7, Ny = 11.

If we zoom in this PSD around the central frequency f,
in Figure 16, we could find the main lobe, i.e., the band-
width occupied is approximately 411 — 389 =~ 22Hz,
which is near to that estimated using nested sampling
and is much narrower than that 32Hz of the PSD of
the original QPSK signal. Hence, the spectrum efficiency
is improved in the estimation using coprime sampling
structure as well.

Another interesting observation is that the bandwidth
of the PSD estimated using coprime sampling is a little
larger than that estimated by nested sampling, as shown
in our example, the bandwidth for coprime estimated PSD
is 411 — 389 &~ 22Hz, while it is 409 — 391 ~ 18Hz
for nested sampling. This is because for the same num-
ber of P and Q (or N7 and N3), the nested sampling could
achieve N = (Nj + 1)N3, while coprime sampling could

50 \ \

QPSK Coprime Estimated Autocorrelation function

40

20

10

Autocorrelation
o

_50 Il Il Il
0 10 20 30

40 50 60 70 80
lags

Figure 12 Coprime sampling estimated autocorrelation of the QPSK signal, when P = 7, Q = 11.
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Power Spectral Density of Nested Sampling QPSK signal
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Figure 13 PSD of nested sampling QPSK signal (N} = 7, Np = 11).
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only get N = PQ.If Ny = P and N, = Q, it is obvi-
ous that the nested sampling estimate a larger number of
N than coprime sampling. Refer to the theoretical analy-
sis, we could conclude that larger N results in narrower
bandwidth, which indicates that if Ny = Pand Ny = Q
for nested and coprime sampling, nested sampling would
have a more efficient spectrum performance.

By changing different N7 and N3 pairs, as shown in
Figure 17, it is obvious that for N fixed to N; = 3, with
the increase of the value of Ny from 5,7 to 13, the main
lobe of the estimated PSD using nested sampling structure
becomes narrower significantly, i.e., the bandwidth occu-
pied gets smaller. Here, in the simulation, we normalize
the PSD values.

Power Spectral Density of Nested Sampling QPSK signal

0 \ \ \

Normalized PSD, [dB]

-16 I I I
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Figure 14 Zoom in the main lobe of PSD for nested sampling QPSK signal (N1 = 7, Ny = 11).
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QPSK Coprime Sampling Estimated Power Sepctrum Density
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Figure 15 PSD of coprime sampling QPSK signal (P =7,Q = 11).
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Similarly, Figure 18 shows that with the increase of Nj
from N7 = 3,5 to N; = 11, while N5 fixed to Ny, = 13,
the main lobe also gets narrower, which also results in the
increase of spectrum efficiency.

From the results got from Figures 17 and 18, we con-
clude that in the nested sparse sampling process, besides
its advantage of less samplers, with N; and N, chosen

larger, the bandwidth of the PSD occupied will becomes
narrower, which increases the spectrum efficiency.
Similar as nested sampling, as P and Q increase for
coprime sampling, the mainlobe of the estimated PSD
narrows down as well, which also indicates smaller
bandwidth and higher spectrum efficiency as shown
in Figure 19, where we increase the second sampler’s

QPSK Coprime Sampling Estimated Power Sepctrum Density
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Figure 16 Zoom in the main lobe of PSD for coprime sampling QPSK signal (P =7,Q = 11).
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Figure 17 PSD of nested sampling QPSK signal with different N5.

sampling interval of Q from 5, 7, to 13, and in Figure 20,
where we increase the first sampler’s sampling interval of
P from 3, 5, to 11.

From Figures 17, 18, 19, 20, we could observe nested
sparse sampling and coprime sampling could obtain sim-
ilar estimated PSD and both are spectrum efficient as the
sampling intervals increase, i.e,, N1 and N for nested
sampling, and P and Q for coprime sampling.

7 Conclusions
In this article, the estimated power spectrum density is

analyzed and simulated using both nested sampling and

coprime sampling structures, which provide us a new way
to efficiently use the spectrum.

We give the principle of nested arrays and coprime
samplers, and the procedure of how to estimate the
autocorrelation and PSD with the sparse samples using
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Figure 18 PSD of nested sampling QPSK signal with different N;.
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QPSK Coprime Sampling Estimated Power Sepctrum Density
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Figure 19 PSD of coprime sampling QPSK signal with different Q.

nested and coprime sampling for QPSK signal. We give
detailed theoretical analysis of how these two sparse
sampling effects the PSD and why it is spectrum effi-
ciency with the increase of sampling intervals, i.e.,
N; and N; for nested sampling, P and Q for coprime
sampling.

Our simulation results show that with the proper choice
of sampling intervals, i.e., making them large enough, the

main lobe of PSD obtained from both nested sampling
and coprime sampling is much narrower than the orig-
inal QPSK signal. If we choose the sampling intervals
larger, the bandwidth occupied will be narrower, which
improves the spectrum efficiency. Besides the smaller
average rate, the increased spectrum efficiency is a new
advantage of both nested sparse sampling and coprime
sampling.
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Figure 20 PSD of coprime sampling QPSK signal with different P.
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