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Abstract

Inspired by recent advances in compressive sensing (CS), we introduce CS to the radar sensor network (RSN) using
pulse compression technique. Our idea is to employ a set of stepped-frequency (SF) waveforms as pulse compression
codes for transmit sensors, and to use the same SF waveforms as the sparse matrix to compress the signal in the
receiving sensor. We obtain that the signal samples along the time domain could be largely compressed so that they
could be recovered by a small number of measurements. A diversity gain could also be obtained at the output of the
matched filters. In addition, we also develop a maximum likelihood (ML) algorithm for radar cross section (RCS)
parameter estimation and provide the Cramer-Rao lower bound (CRLB) to validate the theoretical result. Simulation
results show that the signal could be perfectly reconstructed if the number of measurements is equal to or larger than
the number of transmit sensors. Even if the signal could not be completely recovered, the probability of miss R
detection of target could be kept zero. It is also illustrated that the actual variance of the RCS parameter estimation

Target RCS

satisfies the CRLB and our ML estimator is an accurate estimator on the target RCS parameter.
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1 Introduction

Current requirements in warfighting functionality result
in obtaining accurate and timely information about bat-
tlespace objects and events so that the warfighters can
make decision about reliable location, tracking, combat
identification and targeting information. While massive
amounts of data will be generated by a penetrating sen-
sor, it is important for the warfighters to find technologies
that not only integrate information from diverse sources
but also provide indications of information significance in
ways that help them to make tactical decision. The RCS
is the property of a scattering object, or target, which
represents the magnitude of the echo signal returned to
the radar by the target. Hence, we could have differ-
ent classes with different RCS values representing corre-
sponding targets, such as bird, conventional unmanned
winged missile, small single-engine aircraft and large flight
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aircraft. In this article, we will study the target RCS in a
radar sensor network (RSN) by using compressive sensing
techniques.

It is well known that wireless sensor networks (WSN)
are a fast growing class of systems. In [1], the authors pre-
sented a new method that makes use of the properties
of data of multiple sensors to enable reliable data collec-
tion. In [2], the authors adopted a mutual-information-
based sensor selection (MISS) algorithm to help sensing
devices collaborate among themselves to improve the tar-
get localization and tracking accuracies. Alike WSN, RSN
has been recently considered to overcome the perfor-
mance degradation of a single radar. In [3], the authors
design a network of distributed radar sensors that work
in an ad hoc fashion and the simulation results showed
that proposed RSN can provide much better detection
performance than that of single radar sensor. However,
RSN is quite different from WSN. The waveform of
each radar sensor has to be properly designed, other-
wise, these radar sensors are likely to badly interfere with
each other in the RSN. As a result, the design of radar
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waveforms has been under the study with the goal of opti-
mizing the performance of the RSN. In [4], binary coded
pulses using simulated annealing in RSN are proposed.
Liang [5] studied constant frequency (CF) pulse wave-
form design and proposed Maximum-Likelihood (ML)
automatic target recognition (ATR) approach for both
nonfluctuating and fluctuating targets in a network of
multiple radar sensors. Furthermore, Liang [6] studied
the RSN design based on linear frequency modulation
(LFM) waveforms and also applied the LFM waveforms
to RSN in the context of ATR with delay-Doppler uncer-
tainty. In addition, it is known that the pulse compression
technique allows a radar to achieve both the energy of a
long pulse and the resolution of a short pulse, without
the high peak power which is required by a high energy
short duration pulse [7]. Pulse compression waveforms
are obtained by adding frequency or phase modulation
to a simple pulse. A stepped-frequency (SF) waveform
is a frequency modulation waveform for obtaining a
large bandwidth, and thus a fine range resolution with-
out requiring intrapulse frequency modulation. The most
common SF waveform employs a linear frequency step-
ping pattern, where the RF frequency of each pulse is
increased by AF. This representation motivates the appli-
cability of the recently proposed compressive sensing
(CS) theory [8,9] that refers to such signals as ‘sparse’ or
‘compressible’

Recent results in compressive sensing have shown that
the information from a signal may be captured with a
small set of nonadaptive, linear measurements as long
as the signal is sparse in some basis or frame [10-12].
If the signal is properly chosen, the number of mea-
surements to recover the signal can be much smaller
than the number of Nyquist-rate samples. The appli-
cation of compressive sensing to radar imaging has
been investigated in [13,14]. A CS-based data acquisi-
tion and imaging method was proposed to study a num-
ber of point-like targets for SF continuous wave ground
penetrating radars (SFCW-GPRs) in [15]. In [16], the
authors proposed the step-frequency with compressive
sampling (SFR-CS), that achieves high target range and
speed resolution using significantly smaller bandwidth
than transitional step-frequency radar. The application
of CS to multiple input and multiple output (MIMO)
radar has also attracted a lot of attention in recent
research. The study of [17] studied angle-Doppler esti-
mation of multiple targets for MIMO radar system. In
addition, the authors in [18] also considered the range
estimation performance of their proposed method for
MIMO radar systems that employ CS. Based on adap-
tive radar design, the authors in [19] studied MIMO radar
with widely separated antennas in the context of sparse
modeling for estimating the positions and velocities of
multiple targets.
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Due to the expansion of data introduced to RSN, the
compression and reconstruction of the received data is a
design challenge of future RSN. Unlike the above research,
the study in this article explores how to exploit com-
pressive sensing in RSN composed of a number of trans-
mit sensors but only one receiving sensor. It is known
that the signal must be ‘compressible’ for compressive
sensing to have benefit. Recognizing that the SF train
could act as the sparsity basis for the signal, we apply
it as a pulse compression code to construct the ‘com-
pressible signal’ for a transmit sensor. We choose the
Gaussian matrix as the measurement matrix that satis-
fies the restricted isometry property (RIP) with this basis.
However, there are still a number of challenges in most
CS theory applied to radar which specifically mentions
that it eliminates the need for matched filter in the radar
receiving sensor. In [13], only the range parameter of
the target was studied and the target reflectivity being
probed must be compressible in some basis before their
CS-based radar system could work. In [20], the trans-
mitted signal must be sufficiently ‘incoherent’ and the
targets have to be radially aligned with the transmitter
and receiver. In this article, we propose and investi-
gate a totally different model of CS-based RSN system.
Hence, the matched filters are still used in the receiving
Sensor.

After applying compressive sensing to RSN, we also per-
form target RCS value estimation. We propose an ML
algorithm to estimate the target RCS parameter and use
the Cramer-Rao lower bound (CRLB) to validate our the-
oretical result. In the simulation parts, the performance
of signal recovery and the performance of target detec-
tion are studied as well as the performance of target RCS
value estimation. The simulation results show that the
signal could be precisely recovered if the number of mea-
surements is no less than the number of sensors in RSN.
The target could be perfectly detected even if the sig-
nal could not be precisely recovered. As a result, much
smaller measurement matrix could be used on the receive
part for the purpose of target detection. Finally, the actual
variance of the RCS parameter estimation 0 satisfies the
CRLB.

The article is organized as follows. In Section 2, we
present our basic model by applying CS to RSN exploit-
ing the pulse compression technique. In Section 3, we
show that the range resolution is increased for RSN
using Step-Frequency waveforms as the pulse compres-
sion codes. In Section 4, we propose a Maximum Like-
lihood (ML) algorithm for target RCS value estimation
and derive the CRLB accordingly. In Section 5, the
simulation results illustrate the performance of signal
recovery after decompression, target detection and tar-
get RCS value estimation. Finally, conclusions are drawn
in Section 6.
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2 The basic model

2.1 The produced signal for compressed sensing

The SF pulse train is a pulse burst waveform which
obtains large overall bandwidth while maintaining narrow
instantaneous bandwidth. Each pulse in the burst is a
simple, constant-frequency pulse; however, the RF fre-
quency is added by a frequency step AF between consec-
utive pulses. The most common SF waveform employs a
linear frequency stepping pattern, where the RF frequency
of each pulse is increased by AF Herts from the preceding
pulse. In addition, the frequency steps can be added to a
train of unmodulated pulses, as well as to a train of mod-
ulated pulses. The SF waveform we study in this article is
expressed as follows:

I-1
s(t) =Y sit — iTy)e> M AFiTy), )
i=0

where T, is the pulse repetition interval and I is the
number of pulses in a burst (train) of pulses. Observing
the right side of Equation (1), we see that ¢27/AF(=iTp)
can be expressed into the orthogonal Fourier basis

7T where AF = 7 and # is the index of a
transmit sensor in a RSN. Here, we let the frequency
step AF among each pulse burst waveform corre-
sponding to each specific transmit sensor be different
and related to the index #n. The goal of CS is to per-
form good reconstruction of the signal by using a
few sparse samples. Here, we construct the data in
such a way that is compressed already. We estab-
lish a RSN which uses the SF waveforms as pulse
compression codes. The RSN consists of N transmit
sensors indexed by n and only one receiving sensor.
Then s,(t) = Y1 g%a(t — iTp)eﬂ”%(t_iTP) denotes
the transmit signal for the transmit sensor n. Let
() = Yoizg n(t — iTy) and Y (£) = Y ;2g €27 70T
denote the information signal and the pulse compression
waveforms, where N is the number of transmit sensors
and [ is still the number of pulses in a burst. In order for
the later use, we express the preceding equations in vec-
tor format that %, =[x,(t1), %.(£2), . . ., %,(¢))]T and ¥, =
[ej2ﬂ¥t1’ ej27t27nt2’ cee ejZT[nTItI]T :[ Wlm Wan ] WIn]T~
Then, S = WXT is the transmit matrix, where
X =[.9_C1,9_62, e ,J_CN] and VY] =[ I/fl, Iﬁz, ey 1/[]\[]

The RCS is the property of a scattering target that is
included in the radar equation to represent the magnitude
of the echo signal returned to the radar by the target. As
a result, the RCS returned to the receiving sensor by the
target is assumed to have isotropic reflectivity modeled
by zero-mean, unit-variance, independent and identically
distributed (i.i.d.) Gaussian complex random variables A,,.
Assuming that it is the slow fading system, where the
amplitude and phase change imposed by the channel can

Page 3 of 10

be considered roughly constant over the period of use,
we suppose that the Rayleigh distortion does not fluctuate
during the whole pulse burst. The RCS can be modeled by
the diagonal matrix

1 0 Az
T=—= ) 2)
0 0 An

where the normalization factor makes the target average

RCS = % = 1 independent of the number of
transmit sensors in the model. A popular method for rep-
resenting the fluctuations of targets are the four statistical
models described by Swerling in [21]. The nonfluctuating
target modeled using non-zero constants for 4, = X is
identified as ‘Swerling 0’ or ‘Swerling 5’ model. For the fluc-
tuating target, if |A,| is drawn from the Rayleigh P.D.F. and
varies independently from path to path, the target model
represents a classical ‘Swerling 2’ model.

Taken all the above parameters into account, we use the
following block diagram illustrating as Figure 1 to show
our basic model.

A vector form of the received signal including the useful
signal and the system noise is 7 and we will process with
this 7 in the following section

7 = diag(WwxXxT)

Y11 Y12 - YN A0 0
1 Y21 Vo2 - VN 0 Ay
= ——=diag . L .

V2N . o 0
Y1 Y2 ... YiIN 0 ...0 Ay
x1(81) x1(82) -+ x1(80)
x2(81) x2(r2) - x%2(8r) B
. . . +n

xn (1) xn(t2) -+ - xn (&)

=5,

Y =

i e ——
3 Ak G, — ., @Target
n-l ;_-_ff7!—1//

i ot

Figure 1 The block diagram of the model.
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1 N N
= —F— |:Z )Lnxn(tl)llfl,n: Z AnXn (tZ)l//Z,n: ce

2N n=1 n=1
. ; ()
Z AnXp (tI)I/II,n:| +n,
n=1

where 7 is the noise vector.

2.2 Decomposition and recovery of the signal

In order to obtain some benefit form CS, we choose the
same orthogonal basis v, as the sparse matrix W to study
the received signal 7 including the useful signal and the
noise, where

N

F= Ol = W0 )
n=1

with 2[91,...,9N]T=[< 7’,1&1 >, < 7,&]\[ >]T.

The CS can only work when there are K non-zero coef-
ficients in the vector 6, where K < I. According to
the concepts of CS, there should be only a few large
coefficients and many small ones in 4.

The CS approach uses a set of measurement probes
{¢m :[ P1Lm> P2,ms -+ > (pl,m]T }i\n/lzlx where M is Signiﬁ'
cantly less than the dimensionality / of each individual
probe (I is just the size of receive signal 7 in our case). In a
different way, we would like to recover all the I coefficients
of 7 by observing or measuring a subset M of these

Y =< F, G >,Ym € M, (5)

where Y =[y1,y2,...,ym]T, M C 1,...,I. Since random
matrix & with independent identically distributed (i.i.d.)
entries, e.g., Gaussian or binary entries, exhibit a very low
coherence with any fixed sparse matrix W [13], we take the
Gaussian matrix as the measurement matrix.

The recovery of 7 is done by solving a constrained /;-
norm minimization problem and the reconstructed 7* is
given by 7* = W0*, where 0* is the solution to the convex
optimization program

ming. pr [10% |1, subject to y, =< @, VO* >,Ym € M
(6)

We choose the solution whose coefficient sequence has
the minimal /; norm.

We describe how our model recovers a particular 7*
in section 2.3. We first produce the transmit signal and
receive it as 7. Then, we compute Y by compressing the
received signal 7. Finally, we use the /; minimization with
relaxed constraints to reconstruct the original signal 7*.

2.3 The basic model
Input: ¢, V, ¥, X
7« 7= diag(wzxT)
Y <y, =< (/')m,\IIQ_ >, forallm e M
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0% <T— ming. cpr 116*|11,, subject to
[P WO — ymlly, <€
Output: r* = vo*

We explicitly tie together the parameters for the decom-
pressive process, i.e.,

Y = 077 = oTwo* = A6* 7)

One of the important properties that A = ®TW should
satisfy is the restricted isometry property (RIP) [11]. A suf-
ficient condition for the RIP is that the measurement vec-
tors and the sparsity basis must be incoherent with each
other. The coherence between the measurement matrix ®
and the sparsity basis W here is defined as

(D, V) = maxi<m<m,1<n<N | < @m> ¥n > | (8)

If ® and ¥ contain uncorrelated elements, the coher-
ence is large. So the ‘incoherency’ here means that the
inner products between the probes and the sparsity basis
vectors are small, or, in other words, u is small.

In this article, we express the SF coefficients in the
method of Fourier basis as the sparse matrix

0N 0 2n o nl
1/’;'1Z[elzrrltl’e,zn1tz;uqelznItI]Tz[wlnvanw--’wIn]T

)

Here, the sparse matrix can be non-squared, i.e., the num-
ber of rows can be different from the number of columns
in the sparse matrix. The number of rows is based on
the number of transmit sensors N and the number of
columns depends on the number of time samples I. The
reason why we can use such a non-squared matrix is that
we use the matrix same as the sparse matrix to produce
the ‘compressible’ transmit signal. In addition, the random
waveforms ¢,, (¢) with independent identically distributed
(i.i.d) vectors are largely incoherent with the fixed basis W.
Hence, we choose the complex Gaussian random vectors
as the measurement matrix in our study.

2.4 The output of the matched filter

Different from previous CS-based radar system, we pro-
posed a totally new model for CS-based RSN. Since we use
the matched filters in the receiving sensor, let us assume
that the received signal could be well recovered as r*

N N
1
=7 = — Z)\nxn(tl)wl,nx Z)\nxn(m)l/flm cee
2N |:n—1

n=1
T

N
Z AnXy (tl)l//l,n:| + ﬁ/7

n=1

where 7/ =[n’1,n’2,...,n}]T is the noise vector. Actu-
ally, the power of noise 77’ in the recovered signal is less
than the system noise in the received signal in Equation
(3). Since the 7 may not have good sparsity property in
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the basis W, some information of 7 could not be exactly
recovered by #' Here, we choose the matched filters cor-
responding to the transmit signal S = WX7. Processing
by a bank of matched filters, we express the output of the
matched filter as the following matrix operations

X @)YT, @)Yy, o XTEDYT,
5 x;(tl)Wik,z x;(tZ)wzz s x;(tI)WI*,z
Wy F Wy - DV

Zﬁ[ﬂ AnXn(E) V10 + V2Nmy
1 SN hntn(2) Yo + V2N

V2N
SNtV + v2Nny

N I
|:Z An |:Z xn(ti)wi,nxT (ti)w:1:| + nll ,

n=1 i

[]= %‘H

1
A [Z xn(ti)l/fi,nxz(ti)wz‘z] ..,

T

n=1

1
[Z xn(ti)wi,nx;[(t»w;f]v} + nf\[:|
n=1 i

1

M=
bl

(10)

Since W is the Fourier basis in this article, and X is infor-
mation bits expressed as pulsed signals, it is easy to obtain
that

E, n=k

1
an(ti)wi,nx]t(ti)w:k = { 0. Otherwise ’ (11)
i 7

where E is the energy of the burst of pulses. Therefore,

7= MEdnanE 4. aE+ T, (12)
- T 1 L] )
N 2 N
where 1, is the radar cross section for nth transmit sen-
sor. According to the Equation (12), all the N radar cross
section parameters could be taken into account to detect
or recognize the target, so that the diversity gain of trans-
mit side can be obtained as well.

3 Increased range resolution

The range resolution improvement is one of the impor-
tant properties of the linear SF waveforms (LSFWs). The
details of the Doppler response and range resolution can
be expressed by the ambiguity function (AF) of the LSFW
[22]. The AF is defined as

A(r,v) = |x(T,v)| = Voo u(®)u* (t + 1) exp(i2mvt)dt

(13)
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We designate the complex envelope of the SF pulse train
by u(t) given by

M-1
I/l(t) — Z w0 (t _ mTp)eiZNVnAF(tﬂ%Tf’),

m=0

(14)

where u; (¢) is a radar pulse waveform. Figure 2 presents a
sample AF of a SF train of unmodulated pulses calculated
by using the MATLAB tool.

It is obvious to see that the range resolution of the sig-
nal is improved, but there are still prominent sidelobes in
delay and ambiguity in Doppler. As a result, LFMs and SF
can be combined to mitigate the raging lobes, i.e., SF train
of LEM pulses could be used. An example of SF train of
LFM is shown in Figure 3.

We compare the AF of a SF train of LFM pulses, as
shown in Figure 3, with the AF of a SF train of unmod-
ulated pulses as seen in Figure 2. Clearly, by adding the
LFM, the range and the Doppler resolutions are improved
by canceling the sidelobes along the delay and Doppler
axes. As a result, we choose to use the SF train of LFM
pulses as the transmit waveforms in our model to obtain
both the range and Doppler resolution gain.

4 Target RCS value estimation

In this section, we use the maximum-likelihood (ML) esti-
mation algorithm to perform target radar cross section
(RCS) parameter estimation [23] in the proposed RSN
model. For the ‘Swerling 2’ model, the RCS voltage |1 (x)|
follows a Rayleigh distribution and the I and Q subchan-
nels of A(u) follow zero-mean complex Gaussian distri-
bution with a variance y2 (the RCS average power value)

M) = Ap(u) + jro(u) (15)

In addition, n(u) = n;(u) + jug(u) follows a zero-mean
complex Gaussian distribution with a variance o2 for each
I .and Q subchannel. We express Equation (12) as following

Z(u) = [ M W) E+ny (), ha(WE+ny(w), . . ., AN () E+ny ()] T
(16)

Here, we let

1Zn(@)| = |hn(WE + n,,(w)] (17)

Since A,(u) and #), (1) are zero-mean complex Gaussian
random variables, A,(u) + n,(4) is zero-mean complex
Gaussian random variable with a variance E2y? + 2.

Assuming that y, = |Z,(u)| follows a Rayleigh

distribution:
2
yn yn
= — 18
f(y}’l) Ezyz + 0_2 exp |: 2(E2y2 + 02)} ( )
Lety = [Zw)|, |Zw)| =[1Z1@)],1Z2@)], ..., |Znw)]]
and y, = |Z,(u)|, we can obtain thaty = [y1,y2,...,yn].
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Assuming that y,, are independent of each other, then the
PD.F of yis

>
Vn

fn= Hf(y” = 1_[152 2y g2 P [_Z(EZVZ _,_02)]

(19)

If 0 = y2, we can express (18) as

SO = (20)

_ I exp o In
E20 + 02 2(E26 + 02)

Therefore, we represent the ML algorithm to estimate the
RCS average value 6 as

by (y) = arg sup f(y)
feRt

yZ
exp [_ 2E%0 + 02)]
(21)

It is equivalent to maximize log f (y) (natural logarithm),

N 2
In In
logf(n) =) [log (1529 n 02> T 2% + 02)]
n=1

(22)

It is a continuous function for y,, > 0 and & > 0, hence, a
necessary condition for the ML estimation is

9
30 198/ WMlo—d,,»)
52(Zn_1 y2 — 2N(E%0 + o2))

= — =0 23
2(E20 + 02)2 @3)
Equation (24) has the unique solution
a 1 N=1J’% 2
OmL(y) = B2 (;N -0 (24)
Since 6 > 0,
~ 1 (Eii
A _ L n=1n _ _2 ,0 25
ML (y) = max |:E2 < N o (25)
Since
32 4 N Z]nvzl )’31
@logf(y)b:@m(y) =k ((529 1022 (E% + o2y

4E*N?
(a1 2)?
<0
(26)
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this solution gives the unique maximum of logf(y). The
expectation of 6y (y) is then

N 2 2
Ep [OmL(y)] = Eo |:Z”:1y":| -z

27
2NE? E? @7

The mean value of y,, is /7 (E20 + 62)/2, and its variance
is (4 — ) (E?0 + 02)/2. Since y, are independent of each

other, it is

Eo(y2) = 2(E*0 + o) (28)
Therefore,
Bl = 2 2 (29)
oMLV = T T R
=0

As a result, it is an unbiased estimator.
Fisher’s information [24] in this case can be obtained as
82

[ logf (Y)]

Iy = (30)

002
{N(Eze +o2)— Z’,Y:ly%}

(E20 + 02)3
4
- ﬁ (Eo ) — (E*0 + 0?))
E'N
Taking Equation (28) into account, we can obtain the
Cramer-Rao lower bound (CRLB) [24]

(E20 + 02)?
- EN
From (31), we observe that CRLB is inversely propor-
tional to the number of radars N in the RSN, which means
that the RSN with large N will have a low CRLB. We
draw this conclusion by assuming that the radar pulses
are independent (in time and space) and follow a Rayleigh
distribution, according to the ‘Swerling 2’ model.

Varg[0(y)] > — (31)

5 Simulation results

5.1 Signal recovery

In this section, we study the scenario where we have
N transmit sensors but only one receiving sensor. We
assume that the number of samples is set to 500. We apply
the SF train of LEM pulses as pulse compression codes on
the transmit side and use the CS technique in the receiving
side. The classical ‘Swerling model 2’ and Gaussian noise
are also considered in the simulation. The reconstructed
signal is compared with the original signal by calculat-
ing the mean square error (MSE) in order to evaluate the
reconstruction ability. The Mean Square Error between
the original signal and the reconstructed signal is shown
in Figures 4 and 5 as a function of different number of



Xu et al. EURASIP Journal on Wireless Communications and Networking 2013, 2013:36

http://jwen.eurasipjournals.com/content/2013/1/36

Page 8 of 10

25 T T T T T T T
2tk B
150 i :
m N
%)
1 1
05k \ ]
60 65 70 75 80 85 90 95 100
The number of measurements M
(a) Normalized MSE versus M. Each line corre-
sponds to a different SNR(-5,4).

2_ﬂ
2| ]
M=60
150 1
w
%)
=
1k 1
0.5 ]
e s
M=99
> M=100
5 -4 3 -2 -1 0 1 2 3 4

SNR

(b) Normalized MSE versus SNR. Each line corre-
sponds to a different number of measurements M

Figure 4 Normalized MSE between reconstructed signal and original signal for fixed N= 100. (a) Normalized MSE versus M. Each line
corresponds to a different SNR(—5,4). (b) Normalized MSE versus SNR. Each line corresponds to a different number of measurements M.

measurements M and SNR values. The noise considered
here is introduced by the propagation in the air but not
by compressing and decompressing process. We use the
Monte-Carlo simulation model here and the results are
averaged by 10° runs/iterations. The cases of N = 50 and
N = 100, where N is the number of transmit sensors are
illustrated in Figures 4 and 5, separately.

According to both Figures 4a and 5a, MSE is reduced
as the number of measurements M is increased. The sys-
tem can perfectly reconstruct the signal which includes

the received signal and the system noise when the num-
ber of measurements M is equal to the number of transmit
sensors N. In addition, the slope of MSE versus the num-
ber of measurements M is almost a consistent for each
SNR value. From Figures 4b and 5b, we draw the same
conclusion that the closer the number of measurements
approaches N (M < N), the better performance of signal
recovery is achieved. In addition, we also discover that the
MSE does not depend much on the SNR, especially when
M is large. As a result, the proposed model can be used
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The number of measurements M
(a) Normalized MSE versus M. Each line cor-
responds to a different SNR(-5,4).

Figure 5 Normalized MSE between reconstructed signal and original signal for fixed N= 50. (a) Normalized MSE versus M. Each line
corresponds to a different SNR(—5,4). (b) Normalized MSE versus SNR. Each line corresponds to a different number of measurements M.
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(b) Normalized MSE versus SNR. Each line cor-
responds to a different number of measurements
M.
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under a low SNR if the number of measurements M could
be properly chosen according to the number of transmit
sensors N.

On the basis of the simulation results, we can draw a
brief conclusion that the number of measurements M of
our model only depends on the size of RSN even when the
number of samples is fixed as large as 500 here. Another
important result emerging from the simulations is that the
probability of target miss detection is zero no matter how
small a number of measurements we use in the recovery
process. That is to say, less measurements can be used to
detect the target in the system, since a kind of diversity
gain is achieved at the output of the matched filters on the
receiving sensors.

5.2 RCS parameter estimation

In this section, we will consider the fluctuating target
with an RCS parameter 0 (following Rayleigh distribution)
investigated in the Section 4. We will apply the ML estima-
tion algorithm to estimate the parameter 6. The scenario
is similar to the one in the section above, but the number
of samples in time domain is reduced to 100 for com-
plexity reasons. We ran Monte Carlo simulations for 10°
iterations at each SNR value. We have considered the fluc-
tuating target with RCS parameter 6 = 2 (Small flighter
aircraft or 4 passenger jet) in Figure 6. We plotted the vari-
ance of the RCS ML estimator with different number of
radars in RSN.
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According to Figure 6, the variance of 0 closely
approaches the CRLB but doesn’t exactly match it. The
reason why the variance of 6 is not exactly the same as the
CRLB is that the noise included in Equation (10) cannot be
termed as sparse as the transmit signal in the same sparsity
matrix. Therefore, the noise which is considered in CRLB
can not be perfectly reconstructed after the decompres-
sion. The power of noise o2 reduces so that the calculated
CRLB might be lower than the practical one. As a result,
a gap between the variance of 6 and the CRLB. However,
the gap between variance of 6 and the CRLB is reduced by
increasing the number of radars. It is also easy to see that
the actual variance of 6 reduces as the number of radars
increases from N = 10 to N = 20. Hence, the actual vari-
ance of 0 is inversely proportional to N, as we have shown
in the theoretical result Varg[6(y)] > %.

It is easy to see that the actual variance of 6 and the
CRLB do not change much as the SNR increases. Stat-
ing differently, our ML estimator performs well even for
low SNR ratios. In all, the simulation results validate the
theoretical results. The variance of the RCS parameter
estimation satisfies the CRLB and our ML estimator on
the RCS parameter is an accurate estimator.

6 Conclusions
Motivated by the representation of SF waveforms,
we introduced CS to the RSN exploiting the pulse

0.3
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Figure 6 Variance of RCS ML estimator with different number of radars in RSN. The actual RCS parameter 6 = 2.
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compression technique. A set of SF waveforms were
applied as pulse compression codes at the transmit sen-
sors, and the sparse matrix is also constructed based
on the same SF waveforms. We observed that the sig-
nal samples along the time domain can be significantly
compressed and recovered by using a small number of
measurements which depend on the number of trans-
mit sensors. A diversity gain is also achieved after the
matched filters in the proposed model, so the probabil-
ity of target miss detection can be zero even if the signal
could not be perfectly recovered. In addition, we propose
a ML algorithm to estimate the target RCS parameter
and use the CRLB to successfully verify our theoretical
result.

Competing interests
The authors declare that they have no competing interests.

Acknowledgements

This study was supported in part by National Science Foundation under
Grants CNS-0964713, CNS-1017662, CNS-0963957, CNS-0964060, and Office of
Naval Research under Grant N0O0014-11-1-0071.

Author details

' Department of Electrical Engineering, University of Texas at Arlington,
Arlington, TX 76010, USA. 2Department of Computer Science, The George
Washington University, Washington DC 20052, USA. 3Department of
Preventive Medicine and Biometrics Uniformed Services, University of the
Health Sciences Bethesda, Maryland 20814-4799, USA.

Received: 25 October 2012 Accepted: 5 January 2013
Published: 19 February 2013

References

1. S Mukhopadhyay, C Schurgers, D Panigrahi, S Dey, Model-based
techniques for data reliability in wireless sensor networks. IEEE Trans.
Mob. Comput. 8(4), 528-543 (2008)

2. TOnel, CErsoy, H Delic, Information content-based sensor selection and
transmission power adjustment for collaborative target tracking. IEEE
Trans. Mob. Comput. 8(4), 1103-1116 (2009)

3. Jliang, Q Liang, Design and analysis of distributed radar sensor networks.
IEEE Trans. Parallel Distrib. Process. 22(11), 1926-1933 (2011)

4. HDeng, Synthesis of binary sequences with good correlation and
cross-correlation properties by simulated annealing. IEEE Trans. Aerosp.
Electron. Systs. 8(8), 684-689 (2009)

5. QLiang, Waveform design and diversity in radar sensor networks:
theoretical analysis and application to automatic target recognition. IEEE
Sensor Ad Hoc Commun. Netws. Conf. 2(28), 684-689 (2006)

6. QLiang, Radar sensor networks for automatic target recognition with
Delay-Doppler uncertainty. IEEE Military Commun. Conf.

23-25, 1-7 (2006)

7. MARichards, Fundamentals of Radar Signal Processing (McGraw-Hill, 2005)

8. ECandes, M Walkin, An introduction to compressive sampling. IEEE Signal
Process. Mag. 25(2), 21-30 (2008)

9. RBaraniuk, Compressive sensing. IEEE Signal Process. Mag. 24(4),
118-121 (2007)

10. ECandes, J Romberg, T Tao, Robust uncertainty principles: exact signal
reconstruction from highly incomplete frequency information. IEEE Trans.
Inf. Theory. 52(2), 489-509 (2006)

11. D Donoho, Compressed sensing. [EEE Trans. Inf. Theory.

52,1289-1306 (2006)

12. ECandes, T Tao, Near-optimal signal recovery from random projections:
universal encoding strategies. IEEE Trans. Inf. Theory. 52(12),

5406-5425 (2006)

13. RBaraniuk, P Steeghs, in Radar Conf., 2007 IEEE. Compressive radar
imaging, (2007), pp. 128-133

Page 10 of 10

14.  AC Gurbuz, JH McClellan, WR Scott, in Proc. 41th Asilomar Conf. Signals,
Syst. Comput. Compressive sensing for GPR imaging, Pacofoc Grove, CA,
2007), pp. 2223-2227

15. AC Gurbuz, JH McClellan, WR Scott, A compressive sensing data acgisition
and imaging method for stepped frequency GPRs. IEEE Trans. Signal
Process. 57, 2640-2650 (2009)

16. S Shah, Y Yu, A Petropulu, in 2010 IEEE International Conference on
Acoustics Speech and Signal Processing (ICASSP). Step-frequency radar with
compressive sampling (SFR-CS), (2010), pp. 1686-1689

17. Y Yu, AP Petropulu, HV Poor, MIMO radar using compressive sampling.
IEEE J. Sel. Top. Signal Process. 4(1), 146-163 (2010)

18. Y Yu, AP Petropulu, HV Poor, in 20710 4th International Symposium on
Communications, Control and Signal Processing (ISCCSP). Range estimation
for MIMO step-frequency radar with compressive sensing, (2010)

19. S Gogineni, A Nehorai, in 2010 International Waveform Diversity and Design
Conference (WDD). Adaptive design for distributed MIMO radar using
sparse modeling, (2010)

20. MA Herman, T Strohmer, High-resolution radar via compressed sensing.
IEEE Trans. Signal Process. 57(6), 2275-2284 (2009)

21. P Swerling, Probability of detection for fluctuating targets. IRE Trans. Inf.
Theory. 6, 269-308 (1960)

22. N Levanon, E Mozeson, Radar Signals (Wiley, New York, 2004)

23. QLiang, X Cheng, KUPS: knowledge-based ubiquitous and persistent
sensor networks for threat assessment. IEEE Trans. Aerosp. Electron. Syst.
44(3), 1060-1069 (2008)

24, JM Mendel, Lessons in Estimation Theory for Signal Processing,
Communications, and Control (Prentice-Hall, Upper Saddle River, NJ, 1995)

doi:10.1186/1687-1499-2013-36

Cite this article as: Xu et al: Compressive sensing in distributed radar
sensor networks using pulse compression waveforms. EURASIP Journal on
Wireless Communications and Networking 2013 2013:36.

Submit your manuscript to a SpringerOpen®
journal and benefit from:

» Convenient online submission

» Rigorous peer review

» Immediate publication on acceptance

» Open access: articles freely available online
» High visibility within the field

» Retaining the copyright to your article

Submit your next manuscript at » springeropen.com




	Abstract
	Keywords

	Introduction
	The basic model
	The produced signal for compressed sensing
	Decomposition and recovery of the signal
	The basic model
	The output of the matched filter

	Increased range resolution
	Target RCS value estimation
	Simulation results
	Signal recovery
	RCS parameter estimation

	Conclusions
	Competing interests
	Acknowledgements
	Author details
	References

