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Abstract

Joint network-channel codes (JNCC) can improve the performance of communication in wireless networks, by
combining, at the physical layer, the channel codes and the network code as an overall error-correcting code. JNCC is
increasingly proposed as an alternative to a standard layered construction, such as the OSI-model. The main
performance metrics for JNCCs are scalability to larger networks and error rate. The diversity order is one of the most
important parameters determining the error rate. The literature on JNCC is growing, but a rigorous diversity analysis is
lacking, mainly because of the many degrees of freedom in wireless networks, which makes it very hard to prove
general statements on the diversity order. In this article, we consider a network with slowly varying fading
point-to-point links, where all sources also act as relay and additional non-source relays may be present. We propose a
general structure for JNCCs to be applied in such network. In the relay phase, each relay transmits a linear transform of
a set of source codewords. Our main contributions are the proposition of an upper and lower bound on the diversity
order, a scalable code design and a new lower bound on the word error rate to assess the performance of the
network code. The lower bound on the diversity order is only valid for JNCCs where the relays transform only two
source codewords. We then validate this analysis with an example which compares the JNCC performance to that of a
standard layered construction. Our numerical results suggest that as networks grow, it is difficult to perform
significantly better than a standard layered construction, both on a fundamental level, expressed by the outage
probability, as on a practical level, expressed by the word error rate.
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1 Introduction
Point-to-point communication has revealed many of its
secrets. Driven by new applications, research in wire-
less communication is now focusing more on the opti-
mization of communication in wireless networks. For
example, the joint operation of multiple network layers
can be optimized, denoted as cross-layer design [1,2],
thereby leaving the classical layered architectures, such as
the seven-layer open systems interconnect (OSI) model
([3], p. 20). Another example of network optimization is
cooperative communication, where multiple nodes in the
network cooperate to improve their error performance.
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Cooperation may occur in many forms at different lay-
ers, e.g., cooperative channel coding at the physical layer
and network coding at the network layer. Network cod-
ing refers to the case where the intermediate nodes in
the network are allowed to perform encoding operations
over multiple received streams from different sources. In
a standard layered construction, the decoding of the net-
work code is performed at the network layer, after the
point-to-point transmissions have been decoded at the
physical layer. Channel coding refers to the case where
nodes perform coding over one point-to-point wireless
link only. Cooperative channel coding is achieved by let-
ting one or more relays transmit redundant bits for one
source at a time. Usually, channel coding and network
coding are studied separately (e.g., [4-6] for cooperative
channel coding and [7-11] for network coding).
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Standard linear network coding consists of taking lin-
ear combinations of several source packets. In general,
non-binary coefficients are used in the linear combina-
tions. In JNCC, cooperative channel coding (e.g., decode
and forward [12]) and cross-layer design are combined,
by using the network code for decoding at the physi-
cal layer. The rationale behind JNCC is to improve the
joint error rate performance (i.e., the average error rate
performance over all users participating in the network)
by letting the redundancy of the network code help to
decode the noisy channel output [13]. In that case, a joint
optimization of the network and channel code is useful.
For example, one can opt to let the network and chan-
nel code be represented by one parity-check matrix of a
binary code, referred to as joint network-channel coding
(JNCC). Hence, the coefficients multiplying the packets in
the case of standard linear network coding are replaced by
matrices in the case of JNCC.
Mostly, the two most important performance metrics

are (R,Pe), where R is the information rate and Pe is the
error rate. Here, we consider a fixed information rate R, so
that the aim is to minimize Pe for a given point-to-point
channel quality, expressed by γ , the signal-to-noise ratio
(SNR) per symbol. Expressing the asymptotic (for large γ )
error rate as Pe = 1

gγ d , where g and d are defined as the
coding gain and the diversity order, respectively, improv-
ing the performance refers to maximizing first d and then
g (because d has the larger impact). Next to minimizing
the error rate, scalability of the code design (e.g., to larger
networks) is also an important criterion often recurring in
the literature. JNCC is increasingly proposed as an alter-
native to a standard layered construction, such as the OSI
model. However, it must be verified that important met-
rics, such as the diversity order d and the scalability to
large networks, are not negatively affected.
Binary JNCC received much attention in the last years.

Pioneering articles [14,15] designed turbo codes and
LDPC codes, respectively, for the multiple access relay
channel (MARC) and for the two-way relay channel [16].
However, the code design was not immediately scalable to
general large networks and did not contain the required
structure to achieve full diversity. The study of Hausl et al.
[14-16] was followed by the interesting study of Bao et al.
[17], presenting a JNCC that is scalable to large networks.
However, this JNCC was not structured to achieve full
diversity and has weak points from a coding point of view
[18]. A deficiency in the literature, for general networks
with a number of sources and relays, is the lack of a
detailed diversity analysis in the case that the sources can
act as a relay (which is for example the model assumed
by [17]). The effect of the parameters of the JNCC on
the diversity order is in general not known, because of
the many degrees of freedom in such networks. Related
to this, we mention [19,20], where the authors designed a

JNCC for the case where the sources cannot act as a relay,
but other nodes play the role of relay to communicate to
one destination. As the source nodes are excluded to act as
a relay node in this model, the diversity analysis in [19,20]
is different from ours.
In this article, we consider a JNCC where the network

code forms an integral part of the overall error-correcting
code, that is used at the destination to decode the informa-
tion from the sources. The rest of the article is organized
as follows. In Section ‘Diversity analysis of JNCC’, we per-
form a diversity analysis, leading to an upper bound on
the diversity order of any linear binary JNCC following
our system model, and to a lower bound on the diversity
order for a particular subset of linear binary JNCCs. The
upper and lower bound depend on the parameters of the
JNCC and can be used to verify whether a particular JNCC
has the potential to achieve full diversity on a certain net-
work. Second, in Section ‘Practical JNCC for nur = 2’, a
specific JNCC of the LDPC-type is proposed that achieves
full diversity for a well identified set of wireless networks.
The scalability of this specific JNCC to large networks
is discussed. The coding gain c is not considered in the
body of the article and the parameters of our proposed
code may be further optimized by applying techniques
such as in [19], to maximize c. To assess the performance
of the proposed JNCC, we determine the outage proba-
bility, a well known lower bound of the word error rate,
in Section ‘Lower bound for the WER’. We also present
a tighter word error rate lower bound in Section ‘Calcu-
lation of a tighter lower bound on WER’, that takes into
account the particular structure of the JNCC. In Section
‘Numerical results’, the numerical results corroborate the
established theory. We also briefly comment on the cod-
ing gain achieved by the proposed JNCC and conclusions
are drawn for different classes of large networks.
The main contribution of this article is to indicate the

effect of the parameters of the JNCC on the diversity
order, for networks that fit our channel model. More
specifically, we propose an upper and lower bound on the
diversity order, a scalable code design and a new lower
bound on the word error rate that is tighter than the
outage probability and thus better suited to assess the per-
formance of the overall error-correcting code. The main
contributions are summarized in the lemmas, proposi-
tions and corollaries. These can be a guide for any coding
theorist designing JNCCs. Further, our numerical results
suggest that as networks grow, it is difficult to perform
significantly better than a standard layered construction,
both on a fundamental level, expressed by the outage
probability, as on a practical level, expressed by the word
error rate. This conjecture is important, because one will
now need to clearly motivate the use of JNCC instead of a
standard layered construction, given the extra efforts that
are required for JNCC.
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This article extends the study, published in [18], by also
considering non-perfect source-relay channels, by consid-
erably extending the diversity analysis, by providing an
achievability proof for the diversity order of the proposed
JNCC, by clearly indicating the set of wireless networks
where the proposed JNCC is diversity-optimal, by provid-
ing a tighter lower bound on the word error rate, and by
providing more numerical results.

2 Joint network-channel coding
We first illustrate joint network-channel coding by means
of a simple example. Consider two sources orthogonally
broadcasting a vector of symbols, mapped from the binary
vectors s1 and s2, respectively, to a relay and a destination.
This channel is denoted as a multiple access relay chan-
nel (MARC) in the literature. Supposing that the relay is
able to decode the received symbols, the relay computes a
binary vector r1, which is mapped to symbols and trans-
mitted to the destination. The relation between all bits is
expressed by the JNCC, whose parity-check matrix has
the following general form,

H

s1 s2 r1
Hp 0 0
0 Hp 0
0 0 Hp

H1
1 H1

2 H1

.

(1)

The matrix Hp represents the parity-check matrix for
the point-to-point channel code. Each of the binary vec-
tors s1, s2, and r1, can be separately decoded using this
code. The bottom part of H represents the GLNC, which
we denote as HGLNC =[H1

1 H1
2 H1]. It expresses the rela-

tion between r1, s1, and s2. More specifically, we have

H1r1 = H1
1s1 + H1

2s2. (2)

Note that GLNC includes standard network codes used
in an OSI communication model as a special case. In
the latter case, the matrices Hi

j and Hi (considering more
than one relay in general) are identity matrices or all-zero
matrices, so that the network code simplifies to the relay
packet being a linear combination of source packets, also
expressed as XORing of packets or symbol-wise addition
of packets.
Ideally, the overall matrixH conforms optimized degree

distributions that specify the LDPC code.When the chan-
nels between sources and relay are perfect, we can drop
the first three sets of rows and only keep the GLNC, rep-
resented byHGLNC; in this case the information bits of the
code are s1 and s2, and r1 contains the parity bits. This is
still a JNCC as the redundancy in the network code is used
to decode the received symbols on the physical layer at the
destination. In [21,22], it is proved that the matricesHp do
not affect the diversity order in the case of the MARC.

3 Systemmodel
We consider wireless networks with ms sources directly
communicating to a common destination (e.g., cellphones
communicating to a base station). Two time-orthogonal
phases are distinguished. In the source phase, the sources
orthogonally broadcast their respective source packet. In
the following relay phase, the relays orthogonally broad-
cast their respective packet. All considered sources over-
hear each other during the source phase, and act as relay
in the relay phase. Other nodes, not acting as a source,
might be present in the network (i.e., overhearing the
sources) and also act as relay. Hence, we consider a total
ofmr relays, wheremr ≥ ms. This general network model,
which is practically relevant as it fits many applications, is
adopted in, e.g., [17]. Take for example any large network
and consider a volume in space (cf. picocells or femtocells)
where all nodes can overhear each other. These nodes
form sub-networks and can be modeled by our proposed
model. Note that in the literature, sometimes other mod-
els are assumed, such as the M − N − 1 model [19,20],
where M sources are helped by N relays (the relays are
nodes different from the sources) to communicate to one
destination.
All devices have one antenna, are half-duplex and trans-

mit orthogonally using BPSK modulation. The K infor-
mation bits of each source are encoded via point-to-point
channel codes into a systematic codeword, denoted as
source codeword, of length L, expressed by the column
vector sus for user us, us ∈[ 1, . . . ,ms]. The parity-check
matrix of dimension (L − K) × L of this point-to-point
codeword is denoted by Hp, which is the same for each
user us, so that Hpsus = 0 for all us. In the relay phase,
each relay ur , ur ∈[ 1, . . . ,mr], transmits a point-to-point
codeword rur of length L to the destination, also satisfy-
ing Hprur = 0. Hence, all slots have equal duration, the
coding rate of the point-to-point channels is Rc,p = K

L ,
and the overall coding rate is Rc = msK

(ms+mr)L = Rc,p
ms

ms+mr
.

We define the fraction of source transmissions in the total
number of transmissions as the network coding rate Rn =

ms
ms+mr

, so that Rc = Rc,pRn. The overall codeword of
length (ms + mr)L is expressed by the column vector

x =
[
sT1 . . . sTmsr

T
1 . . . rTms . . . r

T
mr

]T
. (3)

The destination declares a word error if it can not per-
fectly retrieve all msK information bits, and the overall
word error rate is denoted by Pew.
All relevant channels between differenta pairs of net-

work nodes are assumed independent, memoryless, with
real additive white Gaussian noise and multiplicative real
fading (Rayleigh distributed with expected squared value
equal to one). The fading coefficient of a wireless link is
only known at the receiver side of that link. We consider
a slow fading environment with a finite coherence time
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that is longer than the duration of the source phase and
the relay phase, so that the fading gain between two net-
work nodes takes the same value during both phases. We
denote the fading gain from node u to the destination as
αu, with E[α2

u]= 1. All point-to-point channels have the
same average signal-to-noise ratio (SNR), denoted by γ .
Differences in average SNR between the channels would
not alter the diversity analysis, on the condition that the
large SNR behavior inherent to a diversity analysis refers
to allb SNRs being large. Denoting the received symbol
vector at the destinationc in timeslot i as yi, the channel
equation is

{
yus = αuss′us + nus , us = 1, . . . ,ms

yms+ur = αurr′ur + nms+ur , ur = 1, . . . ,mr ,
(4)

where ni ∼ CN (0, 1
γ
I) is the noise vector in timeslot i,

s′us = 2sus − 1 and r′ur = 2rur − 1 (BPSK modulation).
Hence, at the destination, each of the ms independent

fading gains between the sources and the destination
affects 2L bits (L bits in the source phase and L bits in the
relay phase) and each of mr − ms fading gains between
the non-source relays and the destination affects L bits,
assuming that all mr relays could decode the messages
received from the sources. Hence, from the point of view
of the destination, the overall codeword is transmitted on
a block fading (BF) channel with mr blocks, each affected
by its own fading gain, wherems blocks have length 2L and
mr − ms blocks have length L. This notion will be essen-
tial in the subsequent diversity analysis (Section ‘Diversity
analysis of JNCC’).
In the source phase, relay ur attempts to decode the

received symbols from sources belonging to the decod-
ing set S(ur). The users that are successfully decoded
at relay ur are added to its retrieval set, denoted by
R(ur), R(ur) ⊂ S(ur), with cardinality lur . Next, in the
relay phase, relay ur transmits a relay packet, which is
a linear transformation of nur source codewordsd origi-
nated by the sources from the transmission set T (ur) =
{u1, . . . , unur } of relay ur , with T (ur) ⊂ R(ur). If
lur < nur , then relay ur does not transmit anything. In
Section ‘Diversity analysis of JNCC’, we show that nur is
an important parameter that strongly affects the diversity
order.
For example, user 3 attempts to decode the messages

from users 1, 2, and 5, and succeeds in decoding the
messages from users 1 and 5 from which a linear trans-
formation is computed. Hence, S(3) = {1, 2, 5}, R(3) =
T (3) = {1, 5}, l3 = n3 = 2. Because the channel
between a node and the destination remains constant dur-
ing both source and relay phases, a relay has no interest in
including its own source message in S(ur).

Using the transmission set for each relay, the GLNC in
Equation (2) generalizes to

Hurrur =
⊕

us∈T (ur)
Hur
us sus , (5)

where the matrices Hur and Hur
us are of dimension K × L.

Hence, each transmitted relay codeword rur is a linear
transformation of nur source codewords. The superscript
ur in Hur

us indicates that the vector sus is in general not
transformed by the same matrix for all relays ur where
us ∈ T (ur). The overall parity-check matrix H is thus
expressed as

H =
[

Hc

HGLNC

]
, (6)

where Hc is block diagonal with Hp on its diagonal, repre-
senting the channel code, and

HGLNC =

⎡
⎢⎢⎢⎢⎢⎣

H1
1 . . . H1

ms H1 0 . . . 0

H2
1 . . . H2

ms 0 H2 . . . 0
...

...
...

...
...

. . .
...

Hmr
1 . . . Hmr

ms 0 0 . . . Hmr

⎤
⎥⎥⎥⎥⎥⎦
(7)

represents the GLNC.
Table 1 provides an overview of the notation presented

in the system model.

Table 1 Overview of notation for JNCC for larger networks

ms Number of sources

mr Number of relays

Rn Network coding rate, Rn = ms
ms+mr

u, ur , us user indices to indicate a user in general, a relay, and a
source, respectively

T (ur) Transmission set of relay ur

nur |T (ur)|, i.e., the number of sources helped by relay ur

sus , r
ur Point-to-point codeword transmitted by source us and

relay ur , respectively

L Code length of all point-to-point codewords

Hp Parity-check matrix of point-to-point codewords, e.g.,
Hpsus = 0

Rc,p Coding rate of point-to-point codewords

c Overall codeword, that is, the concatenation of all point-
to-point codewords

H Parity-check matrix of overall codeword

Rc Coding rate of overall codeword, Rc = Rc,pRn

HGLNC The part of H that relates the relay codewords rur to the
source codewords sus

Hur
us Matrix to transform sus in the relation with rur in HGLNC
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4 Diversity analysis of JNCC
Before passing to the actual diversity analysis, we provide
the well-known formal definition of the diversity order
([23], Chap. 3).

Definition 1. The diversity order attained by a code C is
defined as

d = − lim
γ→∞

logPew
log γ

,

where γ is the signal-to-noise ratio.

In other words, Pew ∝ γ −d, where ∝ denotes propor-
tional to.
In the proofs of propositions in this article, we will often

use the diversity equivalence between a BF channel and
a block binary erasure channel (block BEC), which was
proved in [24,25]. A block BEC channel is obtained by
restricting the fading gains in our model to belong to the
set {0,∞}, so that a point-to-point channel is either erased
or perfect. Denoting the erasure probability Pr

[
αur = 0

]
by ε, a diversity order d is achieved if Pew ∝ εd for small
ε [26]. A diversity order of d is thus achievable if there
exists no combination of d−1 erased point-to-point chan-
nels leading to a word error. On the other hand, a diversity
order of d is not achievable if there exists at least one
combination of d − 1 erased channels leading to word
error.
In this section, we present the relation between the

diversity order d and the parameters {nur ,ur = 1, . . . ,mr},
as well as between d and the choice of {T (ur),ur =
1, . . . ,mr}. This guides the code design and furthermore,
the potential, of a linear binary JNCC satisfying some con-
ditions, to achieve full diversity, can be verified without
performing Monte Carlo simulations.
We first prove that the diversity order is a function of

only the network coding rate Rn (Section ‘Diversity as a
function of the network coding rate’). We then determine
in Section ‘Space diversity by cooperation’ the relation
between the diversity order d and the set {nur ,ur =
1, . . . ,mr}, for any linear binary JNCC expressed as in
Equations (6) and (7). The set {nur ,ur = 1, . . . ,mr} actu-
ally determines the maximal spatial diversity that can be
achieved by cooperation, leading to an upper bound on
the diversity order. In Section ‘A lower bound based on
{T (ur)} for nur = 2’, we propose a lower bound on the
diversity order in the case that nur = n = 2, which
depends on all transmission sets {T (ur),ur = 1, . . . ,mr}.
In Section ‘Diversity order with interuser failures’, we
discuss how the diversity order is affected by interuser
failures. Finally, in Section ‘Diversity order in a layered
construction’, we briefly comment on the diversity order
in a layered construction, such as the OSI model.

4.1 Diversity as a function of the network coding rate
We denote the maximum achievable diversity order by
dmax.Wewill determine dmax in this section and show that
it only depends on the network coding rate Rn = ms

ms+mr
.

Proposition 1. Under ML decoding, the maximum
diversity order dmax that can be achieved by any linear
JNCC is

dmax =
⎧⎨
⎩ 
1 + mr

2
� , if mr ≤ 2ms

1 + mr − ms , if mr > 2ms

. (8)

Proof. See Appendix 1.

Note that the maximal diversity order does not depend
on L. It can actually be reformulated in the following way:

dmax =
⎧⎨
⎩ 
1 + (1 − Rn)(mr + ms)

2
� , ifmr ≤ 2ms

1 + mr − (ms + mr)Rn , ifmr > 2ms

,

(9)

which for mr = ms = m reduces to the maximum diver-
sity order for a standard BF channele with m blocks and
coding rate Rn [27-29].
Hence, the maximum diversity order does not change

when the point-to-point channel coding rate Rc,p changes.
This corresponds with our intuition as the parity bits of
the point-to-point codes only provide redundancy within
one block forming a point-to-point codeword, hence these
parity bits cannot combat erasures which affect the com-
plete point-to-point codeword. Another consequence is
that the maximal diversity order of JNCC cannot be larger
than in a layered approach, with the same network coding
rate.
In the remainder of the article, full diversity refers to the

diversity order being equal to the maximal diversity order,
d = dmax, from (8).

4.2 Space diversity by cooperation
We denote the word error rate for each source us by Pew,us ,
which is the fraction of packets where at least 1 of the K
information bits from source us is erroneously decoded
at the destination. Associated to Pew,us , we define dus , so
that Pew,us ∝ 1

γ dus
for large γ . We have that maxu Pew,us ≤

Pew ≤ ∑
us Pew,us . From Definition 1, it follows that

d = min
us

dus . (10)

Denote tus , us ∈ {1, . . . ,ms}, as the number of times that
source us is included in the transmission set of a relay:
tus = ∑

ur 
=us (us ∈ T (ur)), where (.) is the indicator
function, which equals one when its argument is true and
zero otherwise. Some simplemeasures can be determined:



Duyck et al. EURASIP Journal onWireless Communications and Networking 2012, 2012:350 Page 6 of 20
http://jwcn.eurasipjournals.com/content/2012/1/350

tmin = minus tus and tav =
∑mr

ur=1 nur
ms

. We will show that
dus depends on tus and thus, by Equation (10), d depends
on tmin. We denote 1+ tmin by dR, which we call the space
diversity order, as it is the minimal number of channels
that convey a source message to the destination.

Proposition 2. For any linear JNCC, applied in our
system model, the diversity order d is upper bounded as

d ≤ dR = 1 + tmin.

Proof. We use the diversity equivalence between a BF
channel and block BEC [24,25]. Assume that the channel
between source us and the destination is erased. Source
us is included in at most tus transmission sets. Assume
that all tus channels between the relays, that include source
us in their transmission set, and the destination are also
erased. Then the destination does not receive any infor-
mation on source us so that it can never retrieve its
message. The probability of occurrence of this event is
ε1+tus , so that Pew,us ≥ ε1+tus , hence dus ≤ 1 + tus . Using
Equation (10), we obtain Proposition 2.

Note that the proof of Proposition 2 is based on the
assumption that relay ur only considers packets transmit-
ted in the source phase for inclusion in S(ur). In the case
that relay ur computes its relay packet also based on pack-
ets transmitted by other relays during the relay phase, the
diversity order becomes more difficult to analyze.
In Corollary 1, we propose the conditions on tmin so

that the space diversity order dR is not smaller than the
maximum achievable diversity order.

Corollary 1. For any linear JNCC, applied in our system
model, full diversity can be achieved only if tmin ≥ q, where

q =
⎧⎨
⎩

⌊mr
2

⌋
, ifmr ≤ 2ms

mr − ms , ifmr > 2ms

Proof. The proof follows directly from Propositions 1
and 2.

Given a GLNC, and thus a choice of T (ur), one can
verify whether the condition in Corollary 1 holds. In the
disaffirmative case, full diversity cannot be achieved. To
get more insight for the code design, we consider the sim-
plest case of a network code where the cardinality of the
transmission set is constant (nur = n).

Corollary 2. For any linear JNCC, applied in our system
model, with constant nur = n, full diversity can be achieved
only if

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

n ≥
⌊m
2

⌋
, if mr = ms = m

n ≥
⌈ms

2

⌉
, if 2ms ≥ mr > ms

n ≥ ms −
⌊
m2

s
mr

⌋
, if mr > 2ms

(11)

Proof. It always holds that tmin ≤ �tav� and if nur = n,
then tav = mrn

ms
. From Corollary 1, full diversity can be

achieved only if
⌊
mrn
ms

⌋
≥ q. Because mrn

ms
≥

⌊
mrn
ms

⌋
, we

have the necessary condition that n ≥ qms
mr

. As n is an

integer, this bound can be tightened, yielding n ≥
⌈
ms
mr

q
⌉
.

Filling in q from Corollary 1 yields Corollary 2.

Table 2 illustrates Corollary 2, showing the set of net-
works in which a certain parameter n is diversity-optimal,
which means that the choice of n does not prevent the
code to achieve full diversity. In Section ‘Practical JNCC
for nur = 2’, we propose a JNCC for n = 2, where taking
n = 2 is diversity-optimal in all networks corresponding
to bold elements in Table 2.

4.3 A lower bound based on {T (ur)} for nur = 2
A certain relay does not help one source only, but a combi-
nation of sources, expressed by the transmission set T (ur)
for each relay ur . In this section, we provide a lower bound
on the diversity order, based on the choice of {T (ur),ur =
1, . . . ,mr}. If this lower bound and the upper bound in
the previous section are tight, the exact diversity order
of JNCCs can so be determined, as will be illustrated in
Section ‘Practical JNCC for nur = 2’.
Based on T (ur),ms andmr , we construct the (ms+mr)×

ms coding matrixM, where

⎧⎪⎨
⎪⎩
Mus,us = 1 forus = 1, . . . ,ms

Mur+ms,us = 1 if us ∈ T (ur),∀ us,ur
Mi,us = 0 otherwise

(12)

Table 2 Minimal value n for a JNCCwith constant nur = n
to maintain its capability to achieve full diversity

mr\ms 1 2 3 4 5 6 7

1 0

2 1 1

3 1 1 1

4 1 1 2 2

5 1 2 2 2 2

6 1 2 2 2 3 3

7 1 2 2 2 3 3 3

8 1 2 2 2 3 3 4
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The matrix M expresses the presence of a source-
codeword in each transmission, i.e., Mi,us = 1 if sus is
considered in transmission i (i = 1, . . . ,ms and i =
ms + 1, . . . ,ms + mr correspond to the source and relay
transmission phases, respectively). Therefore, the upper
part of M is an identity matrix as each source us trans-
mits its own codeword sus in the source phase. The matrix
M represents what is often called the “coding header”
or “the global coding coefficients” in the network coding
literature (see e.g., [30]).
Consider a block BEC channel where e of the mr blocks

have been erased. The indices of the fading gains corre-
sponding to the erased blocks are collected in the set E =
{E1, . . . , Ee}, Ei ∈ {1, . . . ,mr}). Based on E , we construct
ME which corresponds to the subset of transmissions that
are not erased, i.e., all rows Ei (if Ei ≤ ms) and ms + Ei,
for i = 1, . . . , e, in M are dropped. We denote the rank of
ME as rME . The setM(e) collects all possible matricesME
which can be constructed fromM if |E | = e.
Consider an example for ms = mr = 3. Assume that

T (1) = {2, 3}, T (2) = {1, 3}, and T (3) = {1, 2}, so that

M =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0
0 1 0
0 0 1
0 1 1
1 0 1
1 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(13)

Next, assume that E = {1}. Hence, the channel between
user 1 and the destination is erased, so that rows 1 and 4
fromM are dropped:

ME =

⎡
⎢⎢⎢⎣
0 1 0
0 0 1
1 0 1
1 1 0

⎤
⎥⎥⎥⎦ , (14)

and rME = 3. It can be verified that all matrices ME ∈
M(1) have rank rME = 3. However, there exist matrices
ME ∈ M(2) having rank rME < 3.
We can now define a metric that depends on {T (ur)}.

Definition 2. We define dM = e∗ + 1, where e∗ is the
maximal cardinality of E such that rME = ms for each
ME ∈ M(e).

A simple computer program can compute dM, given
T (ur),ms andmr .

Lemma 1. In a JNCC following the form of Equation (6)
with ms = mr and constant nur = n = 2, the metric dM is
at most three.

Proof. Ifms = mr and n = 2, then theminimum column
weight of M is smaller than or equal to three. Erasing the
three rows where Mi,us = 1, for a certain us correspond-
ing to the minimum column weight, leads toME having at
least one zero column, and thus rME < ms. By Definition
2, dM < 4.

In the next proposition, we provide a lower bound on
the diversity order under ML decoding or Belief Propaga-
tion (BP) decoding [31]. We denote

Hur
us =

[
Hp

Hur
us

]
, Hur =

[
Hp

Hur

]
, (15)

which are square matrices of dimension L.

Proposition 3. Using ML decoding, the diversity order
of a JNCC following the form of Equation (6) with constant
nur = n = 2, is lower bounded as

d ≥ dM,

if the matricesHur
us , us ∈ T (ur),ur ∈ {1, . . . ,ms}, have full

rank.
Using BP-decoding, the diversity order of a JNCC follow-

ing the form of Equation (6) with constant nur = n = 2, is
lower bounded as

d ≥ dM,

if, for each ur, the set of L equations

Hurrur =
⊕

us∈T (ur)
Hur

us sus , (16)

can be solved with BP in the case of only one unknown
source-codeword vector.

Proof. See Appendix 2.

We can simplify the condition for BP decoding, stated
in Proposition 3, when we assume that the parity bits of
point-to-point codes do not have a support in HGLNC, or
said differently, when the L−K right most columns of the
matricesHur andH

ur
us are zeroes. In that case, one iteration

in the backward substitution, mentioned in Appendix 2,
corresponds to solving theK unknown information bits of
su via the set of K equations

Hur
u su =

⊕
us∈T (ur)
us 
=u

Hur
us sus + Huryms+ur . (17)

In Section ‘Practical JNCC for nur = 2 ’, we propose
a JNCC where the parity bits of point-to-point codes do
not have a support in HGLNC, so that we take (17) instead
of (16) as condition for BP decoding in the remainder of
the article.
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4.4 Diversity order with interuser failures
It is often easier to prove that a particular diversity order
is achieved assuming perfect interuser channels (see for
example in Section ‘Practical JNCC for nur = 2 ’). Here,
we discuss how this diversity order is affected by interuser
failures.

Lemma 2. In the case of non-reciprocal interuser chan-
nels, any JNCC achieves the same diversity order with or
without interuser channel failures.

Proof. See Appendix 3.

In the case of reciprocal interuser channels, the
achieved diversity order with interuser failures depends
on the transmission sets {T (ur),ur = 1, . . . ,mr}. We
propose an algorithm to construct {T (ur)} in Section
‘Practical JNCC for nur = 2’ and we will then discuss the
diversity order with reciprocal interuser channels.

4.5 Diversity order in a layered construction
In a layered construction, such as the standard OSI model,
the destination first attempts to decode the point-to-
point transmissions. If it can not successfully retrieve
the transmitted point-to-point codeword for a particular
node-to-destination channel, then it declares a block era-
sure, where a block refers to one point-to-point codeword.
Denoting this block erasure probability by ε, we have that
ε ∝ 1

γ
([23], Equation (3.157)). If for example e blocks

of length L are erased, then the decoding corresponds to
solving a set of equations with eL unknowns.
Standard linear network coding consists of taking lin-

ear combinations of several source packets. In general,
non-binary coefficients are used in the linear combina-
tions. Hence, packets are treated symbol-wise, which is
shown to be capacity achieving for the layered construc-
tion [8]. A consequence of this symbol-wise treatment is
that the effective block length of the network code reduces
to ms + mr and the set of equations, that are available at
the destination for decoding, is expressed by the coding
matrix ME . At this block length, ML decoding (which is
equivalent to Gaussian elimination at the network layer)
has low complexity. Under ML decoding, a sufficient con-
dition for successful decoding is rME = ms. Also, for ML
decoding, the maximum number of erasures e∗ = dM − 1
(Definition 2), so that the condition rME = ms is satisfied,
is equal to the minimum distance of the non-binary code
minus one. The minimal distance is, for a given coding
rate, maximum for maximum distance separable (MDS)
codes, so that dM is maximum forMDS codes as well. Also
note that random linear network codes are MDS codes
with high probability for a sufficiently large field size [32].
Table 3 provides an overview of the notation presented

in this diversity analysis.

Table 3 Overview of notation introduced in the diversity
analysis

dmax Maximum diversity order that can be achieved by any
code C for a fixedms andmr

tmin Minimum number of times that a source is included
in the transmission set of any relay

dR An upper bound on the diversity order d, dR = 1+tmin

n Is equal to nur in the case that nur is fixed by the
protocol and thus constant

m Representsms andmr whenmr = ms

M Coding header indicating the presence of the source
codewords in all transmissions; depends on {T (ur)}

E Set, collecting the indices of the blocks that are erased
in the case of the BBEC

ME Reduced coding header obtained from M where all
erased transmissions have been removed

M(e) Collection of all possible matricesME when |E| = e

rME Rank ofME

dM In some cases, dM , which depends on M, is an upper
bound on the diversity order d

Tables 1 and 3 indicate the complexity of the analysis of
JNCC for large networks.

5 Practical JNCC for nur = 2
In the literature, a detailed diversity analysis is most often
lacking. Codes were proposed and corresponding numer-
ical results suggested that a certain diversity order was
achieved on a specific network. It is sometimes not clear
why this diversity order is achieved, and how it would vary
if the network or some parameters change. In the previous
section, we made a detailed diversity analysis of a JNCC
following the form of Equation (6). However, the utility
of for example Proposition 3 is limited to JNCCs follow-
ing the form of Equation (6) with a constant nur = 2,
which suggests that it is very hard to rigorously prove
diversity claims in general. However, the modest analy-
sis made in Section ‘Diversity analysis of JNCC ’ can be
applied in some cases and we will show its utility through
an example.
We consider networks with ms = mr = m ≥ 4 and a

JNCC following the form of Equation (6) with nur = n = 2
for ur = 1, . . . ,m. We will rigorously prove that a diver-
sity order of three is achieved, using the propositions of
Section ‘Diversity analysis of JNCC’. From Table 2, it can
be seen that this JNCC is diversity-optimal for m = 4
and m = 5. In Section ‘Numerical results’, we provide
numerical results form = 5.
From Table 2, it is clear that restricting n to two is

not diversity-optimal in larger networks. However, it also
has some advantages. If n = 2, then every relay just
needs to decode 2 users, and encoding is restricted to tak-
ing a linear transformation of only two source packets.
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Furthermore, taking n = 2 does not impose infeasible
constraints on the number of sources in the vicinity of a
relay in the case that spatial neighborhoods are taken into
account. Next, the theoretical analysis is simpler in the
case n = 2. Finally, taking n = 2 allows to reuse strong
codes designed for the multiple access relay channel, e.g.,
in [21,22].
Besides the diversity order, we indicated in Section

‘Introduction’ that scalability is also very important. The
JNCC proposed here is scalable to any large network with-
out requiring a redesign of the code. This means that we
provide an on the fly construction method. The latter is
particularly important for self regulating networks. As a
node adds itself to the network, it can seamlessly inte-
grate to the network. Together with the new symbols sent
by the new node, a new JNCC code is formed which still
possesses all desirable properties. Finally, note that due to
the large block length of JNCC, ML decoding is too com-
plex and low-complexity techniques, such as BP decoding,
must be used.
Hence, two properties are claimed: scalability to large

networks and a diversity order of three (which is full diver-
sity in some cases) under BP decoding. The JNCC code
is presented in two steps. First, we present the design of
{T (ur)} and thus the coding matrix M. In a second step
(Equation (20)), we specify the matrices Hur and Hur

us and
we will prove that the scalability and the diversity order of
three are achieved.

5.1 First step: design of T (ur)
The transmission sets {T (ur)} have a large impact on the
diversity order. For example, in [18], a random construc-
tion was studied (each relay chooses n = 2 sources at ran-
dom) and it was shown thatE[ tus ]= 2, but Var[ tus ]= 2 as
well, so that most probably tmin < 2 and dR < 3 (Proposi-
tion 2). So we need a more intelligent construction.
We present an algorithm to determine {T (ur)}, givenms

and mr , and we subsequently determine the correspond-
ing metrics tmin and dM. We define the function fms(x) =
((x − 1) mod ms)+1 which adapts themodulo operation
to the range 1 ≤ fms(x) ≤ ms.

Algorithm 1. Choose transmission set T (ur).

The transmission set T (ur) is expressed via the bottom
part of M. An example of such a matrix M is given in
Equation (18) forms = mr = 5.

M =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
0 1 1 0 0
0 0 1 1 0
0 0 0 1 1
1 0 0 0 1
1 1 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(18)

If a node is added as a source node, it adopts the largest
source index, ms + 1, and relay-only nodes, with indices
larger than or equal to ms + 1, increment their index
by one. The function fms(x) is updated to the new ms.
Note that the algorithm corresponds to a deterministic
cooperation strategy, which avoids extra signalling to the
destination regarding the code design.
We first consider the case of perfect interuser channels

and prove that Algorithm 1 yields d = 3 (Corollary 3).
We then consider interuser failures and prove that the
diversity order is not affected (Lemma 3).

Corollary 3. Having perfect links from sources to relays,
the diversity order of a JNCC, with ms = mr and with
transmission set constructed via Algorithm 1, achieves a
diversity order d = 3 using BP-decoding, if, for each ur,
Equation (17) can be solved with BP in the case of only one
unknown source-codeword vector.

Proof. Because the links between sources and relays are
perfect, the relays will never stay silent. In the case that
mr = ms and nur = 2, we have that tmin = tav = 2 and so
dR = 3.
Next, we show that dM = 3 (and thus, according to

Lemma 1, dM is maximized if n = 2). Consider |E | = 2.
Without loss of generality, consider that E = {1, 2}. Con-
sider the set of equations MEz = c. Variables z3, . . . , zms
can be recovered via the top ms − 2 rows of ME . The two
relays u1 and u2 having source us in their transmission set
(T (u1) and T (u2), respectively) are

u1 = fms(us − 1),u2 = fms(us − 2).

Hence, source 1 is included in T (m − 1) and T (m), and
source 2 is included in T (m) and T (1). Hence, relay trans-
mission m − 1 can be used to retrieve source 1 and relay
transmission m can be used to retrieve source 2, as long
as m ≥ 4. Hence, ME has full rank. The generalization to
any set E satisfying |E | = 2, is straightforward. Therefore,
we have that dM = 3.
As dR = dM = 3, the proof follows immediately from

Propositions 2 and 3.
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Next, it can be proved that a JNCC applied in our system
model has a diversity order of three, if it has a diversity
order of three when all interuser channels are perfect. This
is proved in general for non-reciprocal interuser channels
in Lemma 2, and here, we consider reciprocal interuser
channels.

Lemma 3. A JNCC, with transmission set constructed
via Algorithm 1, achieves the same diversity order with or
without interuser channel failures when ms > 4 or when
ms = mr = m ≤ 4.

Proof. See Appendix 4.

For conciseness, we do not consider the other cases,
mr > ms ≤ 4.

5.2 Second step: JNCC of LDPC-type
In the first step, we specified {T (ur)} and proved that dR =
dM = 3 if mr = ms = m > 3. According to Corollary 3,
a diversity order of three is achieved under BP decoding
if, for each ur , Equation (17) can be solved with BP in the
case of only one unknown source-codeword vector. In the
second step, we specify the sub matrices Hur , H

ur
us , ∀ur ,us,

to satisfy this condition, given that {T (ur)} is constructed
according to Algorithm 1.
A simple solution is to replace the K left most columns

in all K × L sub matrices Hur , H
ur
us , ∀ur ,us, by identity

matrices. In this case, the joint network channel cod-
ing essentially reduces to a layered solution: the source-
codewords are decoded at the relays and simply added
according to Equation (5). If the network code is used at
the physical layer, it has to deal with noise and a more
advanced code might be required.
In the literature, a full-diversity close-to-outage per-

forming JNCC for the Multiple Access Relay Channel
(MARC) has been proposed [21,22], which is a code in the
form of Equation (1). These codes are such that the set of
equations

H1
1s1 + H1

2s2 + H1r1 = 0

can be decoded via BP if only one coding vector s1, s2
or r1 is erased and the other coding vectors are per-
fectly known. We denote this JNCC by MARC-JNCC.
The matrix HGLNC, MARC of the MARC-JNCC is given by
Equation (A.7) in [21]f:

1i1 2i1 1i2 2i2 r1

H
I 0 I

0 I I (19)

where sj = [ 1ij 2ij pj] is the codeword from source j, with
[ 1ij 2ij] and pj denoting the information bits and the par-
ity bits, respectively (j = 1, 2); 1ij and 2ij each contain

K
2 information bits. However, the parity bits pj are not
involved inHGLNC, MARC. The matrices Ri, with i = 1, 2, 3,
are random matrices, chosen according to the required
degree distributions of the LDPC code. To facilitate future
notation, we denote

H1 =
[
I R1 0
0 I 0

]
, H ′

1 =
[
R1 I 0
I 0 0

]
,

H2 =
[
0 I 0
I R2 0

]
, H ′

2 =
[
I 0 0
R2 I 0

]
.

and H3 = R3, so that HGLNC = [ H̄1 H̄2 H3], where H̄i =
Hi orH ′

i (it will become clear hereunder which one has
to be chosen at each relay). In H̄1 and H̄2, the first two
block columns each consist of K/2 columns (correspond-
ing to information bits) and the last block column consists
of L − K columns (corresponding to parity bits from the
point-to-point codes). The zero block columns indicate
that parity bits from point-to-point codes have no sup-
port in these matrices. Now replace all sub matrices Hur ,
Hur
us by these matrices, for each relay ur , so that in each

block column corresponding to information bits, we have
a random matrix Ri; this is required to conform any pre-
ferred degree distribution of the LDPC code. For example,
HGLNC can be given by

s1 s2 s3 s4 s5 r1 r2 r3 r4 r5

H

H1 H2 H3

H1 H2 H3

H1 H2 H3

H2 H1 H3

H1 H2

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0 H3

(20)

Each set of rows and each set of columns in H will have
at least one randommatrix, so that any LDPC code degree
distribution can be conformed. We denote this JNCC by
the SMARC-JNCC, where S stands for scalable.

Proposition 4. In a network following the system model
proposed in Section ‘System model’ and using BP, the
SMARC-JNCC achieves a diversity order d = 3.

Proof. Consider the set of K equations

H3rur = H̄1su1 + H̄2su2 , {u1,u2} ∈ T (ur). (21)

In [21], it is proved that this set of K equations can
be solved using the matrices proposed above. We provide
another more simple proof here. Consider a block BEC.
Because H̄1 and H̄2 are upper- or lower-triangular, with
ones on the diagonal, the unknown K information bits can
be retrieved using backward substitution, hence it can be
retrieved with BP as well.



Duyck et al. EURASIP Journal onWireless Communications and Networking 2012, 2012:350 Page 11 of 20
http://jwcn.eurasipjournals.com/content/2012/1/350

By Corollary 3 and Lemma 3, the SMARC-JNCC
achieves a diversity order d = 3.

Note that the information bits of a source need to be
split in two parts: bits of the type 1i and 2i. This allows
the introduction of the matrices R1 and R2 in Equation 19,
so that all information bits have a random matrix in
their corresponding block column in the parity-check
matrix. Now, the LDPC code can conform any degree
distribution.

6 Lower bound for theWER
To assess the performance of the SMARC-JNCC we need
to compare it with the outage probability limit (Section
“Calculation of the outage probability”). We show that the
outage probability limit is not always tight and we pro-
pose a tighter lower bound, which is presented in Section
“Calculation of a tighter lower bound on WER”.

6.1 Calculation of the outage probability
The outage probability limit is the probability that the
instantaneous mutual information between the sources
and sinks of the network is less than the transmitted rate.
The outage probability is an achievable (using a random
codebook) lower bound of the average WER of coded
systems in the limit of large block length [27,33,34].
For a multi-user environment, two types of mutual

information are considered. First, it is verified whether the
sum-rate, Rc in this case, is smaller than the instantaneous
mutual information between all the sources and the sink.
Then, it is verified whether each individual source rate,
Rc
ms

in this case, is smaller than the instantaneous mutual
information between the nodes, transmitting information
for this source, and the destination. The outage proba-
bility for the MARC was determined in [21,35] using the
method described above.
The outage probability is

Pout = P (Eout) ,
where Eout is denoted as an outage event. Similarly as in
[21,35], an outage event is given by

Eout =
{[

Rc ≥
∑ms

us=1 I(Sus ;D) + ∑mr
ur=1 Bur I(Rur ;D)

ms + mr

]

∪ms
us=1

[
Rc
ms

≥ I(Sus ;D) + ∑
j|us∈T (j) BjI(Rj;D)

ms + mr

]}
,

where

Bj =
∏

i∈T (j)
11
[
I(Si;Rj) > Rc,p

]
.

The terms I(Si;D), I(Ri;D), and I(Si;Rj) are the instan-
taneous mutual informations of the corresponding point-
to-point channels with input x ∈ {−1, 1}, received signal

y = αix+wwith w ∼ CN (0, 1
γ
), conditioned on the chan-

nel realization αi, which are determined by applying the
formula for mutual information [36,37]:

I(X;Y |αi) = 1−EY |{x=1,αi}
{
log2

(
1 + exp

[−4yαiγ
])}

,

where EY |{x=1,αi} is the mathematical expectation over Y
given x = 1 and αi.
We now consider the outage probability of a layered

construction, such as the standard OSI model, where
the destination first decodes the point-to-point transmis-
sions, declaring a block erasure if decoding is not success-
ful. For the network code, we assume amaximum distance
separable (MDS) code, which is outage-achieving over the
(noiseless) block-erasure channel [26]. That is, anyms cor-
rectly received packets suffice for decoding. Accordingly,
an outage event for the layered construction, denoted as
Eout,l is given by

Eout,l =
⎧⎨
⎩
⎡
⎣ ms∑
us=1

Es,us +
mr∑

ur=1
Er,ur > mr

⎤
⎦

∪ms
us=1

⎡
⎣1 − Es,us +

∑
j|us∈T (j)

(1 − Er,j) = 0

⎤
⎦
⎫⎬
⎭ ,

where

Es,us = 11
[
I(Sus ;D) < Rc,p

]
and

Er,ur = 1 − Bur 11
[
I(Rj;D) > Rc,p

]
The outage probability for JNCC and a layered con-

struction are compared in Figure 1 for ms = mr = 5,
coding matrixg M given in Equation (18) and Rc,p = 6/7.
The overall spectral efficiency is R = 3/7 bpcu, so that
Eb/N0 = 7γ

3 .
The main conclusion is that the difference between both

outage probabilities is only 1 dB. Hence, on a fundamental
level, the achievable coding gain by JNCC with respect to
a standard layered construction is small for the adopted
system model.

6.2 Calculation of a tighter lower bound onWER
According to information theory, the outage probability is
achievable, where the proof relies on using random code-
books. However, the nature of the JNCC protocol largely
deviates from a random code. For example, the parity bits
corresponding to the point-to-point codes are forced in
a block diagonal structure in Hc (see Equation 6), which
is not taken into account in the outage probability limit.
In fact, in Proposition 1, it was proved that the maximal
diversity order does not depend on Rc but on Rn, which
is not taken into account in the outage probability limit.
Therefore, we argue that the outage probability limit is in
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Figure 1 The outage probabilities of JNCC and a layered construction are compared. The spectral efficiency is R = 3/7 bpcu.

general not achievable by a JNCC, which is illustrated by
means of an example.
Consider a network with ms = mr = 3. The adopted

point-to-point codes have coding rate Rc,p = 0.5, so that
Rc = 0.25. We take nu = 2 and adopt the coding matrix
M, given in Equation (13). Because of the small coding
rate Rc, the outage probability achieves a diversity order
of three (Figure 2). However, it follows from Proposition 1
that dmax = 2. We therefore propose a new lower bound,
which takes into account the point-to-point codes.

A bit node is essentially protected by two codes: a
point-to-point code (Hc) and a network code (HGLNC),
which is illustrated on the factor graph [38] representa-
tion (a Tanner notation [39] is adopted)h of the decoder
(Figure 3).
Usually, both codes are characterized by separate

degree distributions, denoted as (λc(x), ρc(x)) and
(λGLNC(x), ρGLNC(x)) for Hc and HGLNC, respectively.
The new lower bound assumes a concatenated decoding

scheme. At the destination, first the point-to-point codes
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Figure 2 The conventional and tighter outage probability of JNCC are compared.
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Figure 3 The depicted part of the factor graph (using a Tanner
notation) illustrates that a bit node (bit i on the figure) is
essentially connected to two sets of check nodes, corresponding
withHc andHGLNC, respectively. A set of check nodes is denoted
as CND for check node decoder. The LLR-value coming from the CND
corresponding with Hc is denoted as Lc . The LLR-value corresponding
with the channel observation is denoted as Lobs,i .

are decoded and then soft information is passed to the net-
work decoder. This is illustrated in Figure 4, where the soft
information is denoted by the log-likelihood ratio (LLR)
Lobs′,i. Note that the bit node of bit i is duplicated to be
able to clearly indicate Lobs′,i. Applying the sum-product
algorithm (SPA) on this factor graph or the original factor
graph (without node duplication) is equivalent. This fol-
lows immediately from the sum-product rule for variable
nodes (([40]see Section 4.4)) and ([38], Equation (5)).
The LLR Lobs′,i can be viewed as a new channel obser-

vation as it remains fixed during the iterative decoding of
the network code (HGLNC). The maximum rate that can
be achieved by the network code is given by

1
ms + mr

⎛
⎝ ms∑

us=1
I(Sus ; Lobs′) +

mr∑
ur=1

Bur I(Rur ; Lobs′)

⎞
⎠ .

The terms I(Su; Lobs′) and I(Ru; Lobs′) are the mutual
informations between the channel input x ∈ {−1, 1} and
the associated random variable Lobs′ , conditioned on the
channel realization αu, determined by applying the for-
mula for mutual information [36,37], i.e., I(X; Lobs′ |αu)

is

1 − ELobs′ |{x=1,αu}

{
log2

(
1 + pLobs′ (l|x = −1,αu)

pLobs′ (l|x = 1,αu)

)}
,

The density of the random variable Lobs′ can be obtained
bymeans of density evolution [41], given the degree distri-
butions of the point-to-point code, or by means of Monte
Carlo simulations, given the actual factor graph of the
point-to-point code. Both approaches yield to the same
results in our simulations.
Similarly to the conventional case, an outage event,

denoted as Eout,2 is given by

Eout,2 =
{[

Rn ≥
∑ms

us=1 I(Sus ;Lobs′ )+
∑mr

ur=1 Bur I(Rur ;Lobs′ )
ms+mr

]

∪ms
us=1

[
Rn
ms

≥ I(Sus ;Lobs′ )+
∑

j:us∈T (j) BjI(Rj ;Lobs′ )
ms+mr

]}
.

Note that the network coding rate is used instead of the
overall rate Rc, which corresponds to Proposition 1.
The tight lower bound presented here is a valid lower

bound if the point-to-point codes are first decoded, fol-
lowed by the network code, without iterating back to the
point-to-point codes.
Let us now go back to the small network example with

ms = mr = 3, considered in the beginning of this section.
Figure 2 compares the conventional outage probability
(Section ‘Calculation of the outage probability’) with the
tighter lower bound proposed here. As mentioned before,
the conventional outage probability has a larger diver-
sity order than what is achievable, while the tighter lower
bound only achieves a diversity order of two.
We are seeing a 3 dB difference at an outage probabil-

ity of 10−4. To assess the performance of the network
code only, given a certain point-to-point code, the WER
of the SMARC-JNCC should be compared with the tight

Figure 4 The bit node in Figure 3 can be duplicated with a single edge between both nodes as shown in this figure. The LLR Lobs′ ,i is the
sum of all incoming LLR-values from the left, and contains the soft information which is passed to the network code decoder in a concatenated
coding scheme.
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lower bound presented here. In the subsequent sections,
we always include both lower bounds.

7 Numerical results
In this section, we provide numerical results for the
SMARC-JNCC. We will clarify the proposed techniques
on an illustrating network example, where ms = mr = 5
(Figure 5). We use the same network example as in [17,18]
so that a comparison is possible.
For simplicity, we assume non-reciprocal interuser

channel in the simulation results. Note that in the case
that ms > 4 and Algorithm 1 is used to construct
{T (ur),ur = 1, . . . ,mr}, reciprocity is irrelevant for our
proposed code, as it applies that i /∈ T (j) if j ∈ T (i).
We compare the error rate performance of the SMARC-

JNCC with the outage probability limit and the tighter
lower bound, which are presented in Section ‘Lower
bound for the WER’, and with standard network coding
techniques (using identity matrices in HGLNC) and a lay-
ered network construction (also using identity matrices in
HGLNC, and where, at the destination, the network code is
only decoded after decoding all point-to-point codewords
separately and taking a hard decision).
The point-to-point code used in the simulations is an

irregular LDPC code [41] characterized by the standard
polynomials λ(x) and ρ(x) [41]:

λ(x) =
db∑
i=2

λixi−1, ρ(x) =
dc∑
i=2

ρixi−1.

where λ(x) and ρ(x) are the left and right degree distribu-
tions from an edge perspective. The coefficients λi and ρi

1

2

3

4
5

Figure 5 The network example that will be used in this
document is illustrated. The solid lines represent interuser channels,
the dashed line is the channel to the destination. Only the channels
from the perspective of user 1 are shown for clarity, but all other users
see equivalent channels.

are the fraction of edges connected to a bit node and check
node, respectively, of degree i. The adopted point-to-point
code is fetched from [42], has coding rate Rc,p = 6/7 and
conforms the following degree distributions:

λ2 = 0.173, λ3 = 0.223, λ4 = 0.095, λ5 = 0.51
ρ24 = 0.96, ρ25 = 0.04.

7.1 Perfect source-relay links
We start by assessing the performance of HGLNC, the
bottom part of Equation (20), which determines the diver-
sity order. Therefore, we assume perfect links between
sources and relays. Hence, the channel model is the same
as described in Section ‘System model’, with the exception
of the interuser channels, which are assumed to be per-
fect (no fading and no noise). The parameters used for
the simulation are K = L = 900, ms = mr = 5 (so
that N = 10 K = 9000), where N is the block length
of the overall codeword. The overall spectral efficiency is
R = 0.5 bpcu, so that Eb/N0 = 2γ .
Figure 6 shows that a diversity order of 3 is achieved for

SMARC-JNCC, which corroborates Corollary 3. It per-
forms at 2.5 dB from the outage probability (because
no point-to-point codes are considered, only the con-
ventional outage probability is shown), which may be
improved by optimizing the degree distributions. We also
show a JNCC, where all submatrices Hur , H

ur
us , ∀ur ,us

are replaced by identity matrices, denoted as the I-JNCC.
Finally, we show an I-JNCC with irregular {nur }, with
coding matrixM, given by

M =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
0 1 1 1 0
0 1 1 0 1
1 0 1 1 1
1 1 1 1 1
0 1 0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (22)

It is clear that, even without optimizing the SMARC-
JNCC, there is a benefit in terms of coding gain compared
to the I-JNCC.

7.2 Rayleigh faded source-relay links
Now, we assess the performance of the complete parity-
checkmatrixH of the SMARC-JNCC.We use the channel
model as described in Section ‘System model’. Hence, all
links have the same statistical model and the average SNR
is the same for all channels. The parameters used for the
simulation are K = 606, Rc,p = 6/7, L = 707, ms = mr =
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Figure 6 The word error rate of the SMARC-JNCC is compared to that of the I-JNCC, assuming perfect source-relay channels.

5 (so that N = 10L = 7070). The overall spectral effi-
ciency is R = 3/7 bpcu, so that Eb/N0 = 7γ /3. Because
the simulation time would be very large if every point-
to-point source-relay link had to be decoded separately,
we made an approximation. The word error rate of the
point-to-point code when transmitted on a channel with
fading gain α is smaller than 10−4 when α2γ = 5.5 dB.
Therefore, we assumed that a relay had correctly decoded
the source-codeword if α2γ > 5.5 dB and not otherwise.

We also add the performance of the SMARC-JNCC from
Section ‘Perfect source-relay links’, corresponding to per-
fect source-relay links and R = 0.5 bpcu, as a reference
curve (note that the reference curve corresponds to a
larger spectral efficiency—the coding rate Rc is larger—
than for the other curves, which slightly disadvantages the
reference curve in terms of error performance).
Figure 7 shows that a diversity order of 3 is still achieved,

which corroborates Proposition 4. In addition, two main
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Figure 7 The word error rate of the SMARC-JNCC is compared to that of the I-JNCC and a layered construction, assuming Rayleigh faded
source-relay channels. The reference curve is the performance of the SMARC-JNCC assuming perfect source-relay channels (Section
‘Perfect source-relay links’).
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conclusions can be made. First of all, the coding gain loss
due to interuser failures is 6.5 dB, which is very large.
Second, the benefit in terms of coding gain of the SMARC-
JNCC compared to the I-JNCC is considerably decreased,
compared to Section ‘Perfect source-relay links’, which
corresponds to the small horizontal SNR-gap between the
outage probabilities of a layered and joint construction.
Also note that the tighter lower bound using density evo-
lution, is close to the conventional lower bound in this
case (probably due to the larger coding rate Rc,p). Finally,
the WER performance of a layered construction is shown,
which coincides with that of the I-JNCC.

7.3 Gaussian source-relay links
We test again the complete parity-check matrix H of the
SMARC-JNCC, now assuming that the source-relay links
are Gaussian, having additive white Gaussian noise only,
without fading; fading occurs on the source-destination
and relay-destination links only. We assume that the aver-
age SNR is the same for all channels. The parameters used
for the simulation are the same as in Section ‘Rayleigh
faded source-relay links’.
Figure 8 shows that in the case of Gaussian interuser

channels, the loss compared to perfect interuser chan-
nels is very small. Furthermore, the performance of the
I-JNCC has improved a lot in comparison with Section
‘Perfect source-relay links’, where HGLNC only was used.
The degree distributions causing the poor coding gain of
the I-JNCC in Section ‘Perfect source-relay links’, have
changed considerably through the point-to-point codes,
significantly improving the coding gain.

8 Conclusion
We put forward a general form of joint network-channel
codes (JNCCs) for a wireless communication network
where sources also act as relay. The influence of important
parameters of the JNCC on the diversity order is studied
and an upper and lower bound on the diversity order are
proposed. The lower bound is only valid for the case where
the number of sources is equal to the number of relays,
and where each relay only helps two sources.
We then proposed a practical JNCC that is scalable to

large networks. Using the diversity analysis, we managed
to rigorously prove its achieved diversity order, which
is optimal in a well identified set of wireless networks.
We verified the performance of a regular LDPC code via
numerical simulations, which suggest that as networks
grow, it is difficult to perform significantly better than a
standard layered construction.

Appendix 1
Proof of Proposition 1
The maximal diversity order can be derived using the
diversity equivalence between a block BEC and a BF chan-
nel [24,25]. Assume a block BEC, so that a block sus or rur
is completely erased or perfectly known. Consider the case
that e1 blocks of length 2L and e2 blocks of length L have
been erased, where e = e1 + e2 is the total number of era-
sures, e1 ≤ ms and e2 ≤ mr − ms. Hence, the number of
unknown bits is equal to e12L+e2L. Considering the struc-
ture of H from (6) containing the block-diagonal matrix
Hc, it follows that the e12L+e2L erased bits appear in only
(2e1+e2)(L−K)+mrK of the available (ms+mr)L−msK
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Figure 8 The word error rate of the SMARC-JNCC is compared to that of the I-JNCC, assuming Gaussian source-relay channels. The
reference curve is the performance of the SMARC-JNCC assuming perfect source-relay channels (Section ‘Perfect source-relay links’).
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parity equations, i.e., (2e1 + e2)(L − K) equations involv-
ing Hc and all mrK equations involving HGLNC. Hence,
the unknown bits can be retrieved only if there are suf-
ficient linearly independent useful equations. This yields
the necessary condition:

mr ≥ 2e1 + e2. (23)

Denoting by e = e1 + e2 the total number of erased
blocks, the largest value emax of e for which e1 and e2 sat-
isfy (23) for all e1 ≤ ms and e2 ≤ mr − ms is given by

emax =
⎧⎨
⎩

⌊mr
2

⌋
mr ≤ 2ms

mr − ms mr > 2ms
(24)

Hence, dmax = emax + 1, yielding Proposition 1.

Appendix 2
Proof of Proposition 3
Before we present the actual proof, we first propose two
lemmas.

Lemma 4. Any binary a × b matrix S, a ≥ b, where all
rows have weight 2 cannot have full rank b.

Proof. If a matrix has full rank, there is no vector z 
= 0
such that Sz = 0. However, if S has row weight 2, then
S1 = 0, where 1 corresponds to a column vector with each
entry equal to 1.

Consider now a column vector of b unknown variables
z and a set of constraints on these variables, which are
stacked in S so that Sz = c, where c is a column vector of
known constants. In general, solving S for z corresponds
to performing Gaussian elimination of S. However, under
some conditions, this simplifies to backward substitution.

Lemma 5. If a binary a × b matrix S, a ≥ b, has full
rank b andmaximal row weight of 2, Gaussian elimination
simplifies to backward substitution.

Proof. Without loss of generality, we eliminate all redun-
dant (linearly dependent) rows in S to obtain a square
matrix of size b. By Lemma 4, there must be at least one
row in S with unit weight to have full rank. Starting from
this known variable, we can solve for a further variable in
z at each step as the row weight is smaller than or equal
to 2.
Assume that this backward substitution procedure can-

not be continued until all variables are known. That is,
after successive decoding, there are k rows consisting of
a combination of zik + zjk where neither zik nor zjk are
known. We split the matrix S into two parts: Sunknown ∈
{0, 1}k×ms and Sknown ∈ {0, 1}ms−k×ms . The former com-
prises the rows involving only unknown variables (note

that the weight of each row of Sunknown is 2). The lat-
ter consists of the rows involving only known variables.
If the number of unknown variables is equal to k, then
the rank of Sunknown must be equal to k which is impossi-
ble by Lemma 4. So, the matrix S was not full rank which
contradicts our assumption. If the number of unknown
variables is smaller than k, then there were redundant (lin-
early dependent) rows in Sknown which contradicts the
assumptions again. We conclude that the procedure only
fails if S does not have full rank.

To prove Proposition 3, we use the diversity equivalence
between a block BEC and the BF channel. In a block BEC,
the channel Equation (4) simplifies to{

yus = εuss′us , us = 1, . . . ,ms

yms+ur = εurr′ur , ur = 1, . . . ,mr ,
(25)

where εi = 0 when the channel is erased and εi = 1
otherwise. Hence, εi = 0 if i ∈ E and εi = 1 if i ∈ Ē , where
Ē is the complement of E .
Source-codewords si can be retrieved from the trans-

missions in the source phase if εi = 0. Decoding the
other source-codewords at the destination is performed
through the parity-checkmatrixH (Equation (6)).We split
H in two parts:

H = [
Hleft Hright

]
, (26)

where Hleft and Hright have msL and mrL columns,
respectively. We also define s =[ sT1 . . . sTms ]

T and r =
[ rT1 . . . rTmr ]

T . As Hx = 0, we have that

Hlefts = Hrightr. (27)

As we consider a block BEC, some transmissions are
perfect. As in Appendix 1, consider the case that e1 blocks
of length 2L and e2 blocks of length L have been erased,
where e = e1 + e2 = |E | is the total number of erasures,
e1 ≤ ms and e2 ≤ mr − ms. Considering the structure
of H from (6) containing the block-diagonal matrix Hc,
it follows that the e12L + e2L erased bits appear in only
(2e1+e2)(L−K)+mrK of the available (ms+mr)L−msK
parity equations, i.e., (2e1 + e2)(L − K) equations involv-
ing Hc and all mrK equations involving HGLNC. Next,
(e1 + e2)K from themrK equations involving HGLNC can-
not be used to solve erased bits in s as these equations
always have at least two unknowns. The overall set of
equations to decode s thus becomes

⎧⎪⎪⎨
⎪⎪⎩
sus = y′

us ∀ us ∈ Ē
Hpy′

us = 0 ∀ us ∈ E⊕
us∈T (ur)

Hur
us sus = Hury′

ms+ur ∀ ur ∈ Ē ,
(28)
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or, using the notation from (15),⎧⎨
⎩
sus = y′

us ∀ us ∈ Ē⊕
us∈T (ur)

Hur
us sus = Hury′

ms+ur ∀ ur ∈ Ē ,
(29)

where y′
i = 1+yi

2 (BPSK modulation). We can stack the
coefficients of all elements in s in amatrixHs. For example,
ifms = mr = 3, E = {1}, T (2) = {1, 3} and T (3) = {1, 2},
then

It is now easy to see that ME , as defined in Section ‘A
lower bound based on {T (ur)} for nur = 2’, is closely
related toHs: [ME ]i,j = 1 if [Hs](i−1)L+1...iL,(j−1)L+1...jL 
= 0
and [ME ]i,j = 0 if [Hs](i−1)L+1...iL,(j−1)L+1...jL = 0.
If |E | ≤ dM − 1, then ME has full rank, according

to Definition 2. As established in Lemma 5, the set of
equations represented by ME can be solved using back-
ward substitution. This means that at each iteration, there
is an equation with only one unknown. Consider a partic-
ular iteration and denote the index of the unknown by u.
In Hs, this corresponds to an equation with an unknown
source-codeword vector su of the type⎧⎨

⎩
Hpsu = 0

Hur
u su =

⊕
us∈T (ur)
us 
=u

Hur
us sus + Hury′

ms+ur .
(31)

or of the type su = y′
u.

Under ML decoding, we obtain what was claimed if the
matrices Hur

us , us ∈ T (ur),ur ∈ {1, . . . ,mr} have full rank.
Under BP decoding, we obtain what was claimed if, for
each ur , the set of L Equation (31) can be solved with
BP in the case of only one unknown source-codeword
vector su.

Appendix 3
Proof of Lemma 2
A relay may not succeed in successfully decoding the
message from a source, denoted as a failure. There are
m2 − m interuser channels, which all have a probability

of failure. Hence, there exist
∑m2−m

i=0

(
m2 − m

i

)
differ-

ent cases, where each case corresponds to a combination
of failures and successes. We denote the case where all
interuser channels are successful as case 1.

Using Bayes’ law, the error rate can be split:

Pew =
∑
i
P(case i)P(ew|case i). (32)

Defining the diversity order corresponding to each case
as dc,i = − limγ→∞ logP(case i)P(ew|case i)

log γ
, it follows that the

overall diversity order is d = mini dc,i.
The probability of f failures on independent interuser

channels is proportional to 1
γ f ([23], Equation (3.157)) so

that for this case i,

dc,i = − lim
γ→∞

logP(case i)
log γ

− lim
γ→∞

logP(ew|case i)
log γ

(33)

= f − lim
γ→∞

P(ew|case i)
log γ

(34)

The diversity order in the case of perfect interuser chan-
nels (f = 0) is dc,1. That is, the error-correcting code can
bear dc,1 − 1 erasures on node-destination links. Hence,
dc,i ≥ dc,1 only if P(ew|casei) ≤ c

γ dc,1−f , or, all informa-
tion can still be retrieved at the destination, given that
f interuser channels and dc,1 − f − 1 node-destination
channels are erased. Let us check whether this is true for
all f.
A relay stays silent if it cannot decode all source code-

words corresponding to its transmission set. If there are
f interuser failures, there are at most f relays which
stay silent in the relay phase. This corresponds to at
most f additional node-destination erasures adding to the
assumed dc,1 − f − 1 already erased node-destination
channels, yielding a total of at most dc,1 − 1 erased node-
destination channels, which can be supported by the code,
by the definition of dc,1.

Appendix 4
Proof of Lemma 3
In the case that ms > 4 and Algorithm 1 is used to con-
struct {T (ur),ur = 1, . . . ,mr}, reciprocity is irrelevant for
our proposed code, as it applies that i /∈ T (j) if j ∈ T (i).
Hence, if ms > 4, the proof given in Appendix 3 is always
valid.
Now consider the case that dc,1 = 2, which corresponds

to ms = mr = m < 4 (see Proposition 1). In the case
of f = 1 interuser channel, dc,i is always larger than
one, because P(ew|case i) ≤ c

γ
as at least one channel,

the source-destination channel, needs to fail to loose the
corresponding information bits.
Finally, consider the case that ms = mr = m = 4

and thus dc,1 = 3. Hence, in the case of no interuser
failures, the code can support two node-destination fail-
ures, corresponding to four erased transmissions from
two nodes, in the source phase and in the relay phase.
Reciprocity is relevant as i ∈ T (j) if j ∈ T (i) for (i, j)
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is (1, 3) and (2, 4). Because P(ew|case i) ≤ c
γ
, we only

have to consider the case that f = 1, denoted as case
i in general. Hence, in the case that the interuser chan-
nel between sources one and three or two and four have
been erased, relays one and three or two and four, respec-
tively, stay silent. Note that the transmission sets from the
remaining active relays are disjoint when Algorithm 1 is
used, and because n = 2, they support all sources us =
1, . . . , 4. If one node-destination channel is consequently
erased, which corresponds to at most two transmissions,
the destination has to recover the information bits from
the erased source-codeword. Because relay ur cannot have
ur in their own transmission set T (ur), the erased relay
codeword does not contain any information on the erased
source-codeword, which implies that the information is
in the remaining relay codeword. Hence, we have that
P(ew|case i) ≤ c

γ 2 or by (34), dc,i ≥ 3. In other words,
interuser failures do not decrease the diversity order.

Endnotes
aUnless mentioned otherwise, we assume that channels
are reciprocal, i.e., the channel from u1 to u2 is the same
as the channel from u2 to u1.
bIn practice, increasing the SNR value can be achieved by
increasing the transmission power of a node, so that both
the SNR of the node-to-destination channels and channels
between non-destination nodes increase.
cFor conciseness, we do not formulate the equation for
channels between non-destination nodes.
dNote that relays u are not allowed to consider relay code-
words rur for inclusion in S(u). As a consequence, the
right part of HGLNC is diagonal in Equation (7). This
restriction was not always applied in the literature (e.g.,
[17]), but it simplifies the theoretical analysis and code
design.
eA standard BF channel is a channel with B blocks of
length L, where each block is affected by an independent
fading gain. The maximal achievable diversity order on
this channel is given by 1 + �B(1 − Rc)�, where Rc is the
coding rate [27-29].
fThe attentive reader will notice that the first two block
rows in Equation (A.7) in [21] are not used here. These
block rows are only necessary if a source is helped by one
relay only and no point-to-point codes are available, which
is not the case here.
gThe coding matrix expresses the transmission sets for
each relay, which is required to determine the outage
probability.
hFor a specific instance, the parity-check matrix can be
graphically represented by a bipartite graph, denoted as
a Tanner graph. The graphical Tanner graph representa-
tion is equivalent to the factor graph, which can be used
for decoding.
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10. JK Rebelatto, BF Uchôa-Filho, Y Li, B Vucetic, Multi-user cooperative
diversity through network coding based on classical coding theory. IEEE
Trans. Sig. Process. 60(2), 916–926 (2012)

11. M Xiao, M Skoglund, in Proc. Inf. Theory Workshop (ITW). M-user
cooperative wireless communications based on non-binary network
codes (Volos, Greece, 2009), pp. 316–320

12. G Kramer, M Gastpar, P Gupta, Cooperative strategies and capacity
theorems for relay networks. IEEE Trans. Inf. Theory. 51(9), 3037–3063
(2005)

13. Z Guo, J Huang, B Wang, JH Cui, S Zhou, P Willett, in Proc. of the ACM
intern. symp. onmob. ad hoc netw. and comp. A practical joint
network-channel coding scheme for reliable communication in wireless
networks (Louisiana, New Orleans, 2009), pp. 279–288

14. C Hausl, P Dupraz, Joint network-channel coding for the multiple-access
relay channel. Proc. IEEE Commun. Soc. Sensor Ad Hoc Commun. Netw.
3, 817–822 (2006)

15. C Hausl, F Schreckenbach, I Oikonomidis, G Bauch, in Proc. Allerton Conf.
on Commun. Control and Computing. Iterative network and channel
decoding on a tanner graph (Monticello, Illinois, 2005). http://scholar.
google.com/citations?view op=view citation&amp;hl=en&amp;user=
4GFQzXIAAAAJ&amp;citation for view=4GFQzXIAAAAJ:d1gkVwhDpl0C

16. C Hausl, J Hagenauer, in Proc. IEEE Int. Conf. on Comm, vol. 4. Iterative
network and channel decoding for the two-way relay channel (Istanbul,
Turkey, 2006), pp. 1568–1573

17. X Bao, JT Li, Generalized adaptive network coded cooperation (GANCC):
a unified framework for network coding and channel coding. IEEE Trans.
Commun. 59(11), 2934–2938 (2011)

18. D Duyck, D Capirone, M Heindlmaier, M Moeneclaey, in Proc. of Europ.
Wirel. Conf. Towards full-diversity joint network-channel coding for large
networks (Vienna, Austria, 2011), pp. 1–8

19. J Li, J Yuan, R Malaney, MH Azmi, M Xiao, Network coded LDPC code
design for a multi-source relaying system. IEEE Trans. Wirel. Comm.
10(5), 1538–1551 (2011)

20. J Li, J Yuan, R Malaney, M Xiao, in IEEE Int. Conf. on Comm. Binary field
network coding design for multiple-source multiple-relay networks
(Sydney, NSW, Australia, 2011), pp. 1–6

http://scholar.google.com/citations?view_op=view_citation&amp;hl=en&amp;user=4GFQzXIAAAAJ&amp;citation_for_view=4GFQzXIAAAAJ:d1gkVwhDpl0C
http://scholar.google.com/citations?view_op=view_citation&amp;hl=en&amp;user=4GFQzXIAAAAJ&amp;citation_for_view=4GFQzXIAAAAJ:d1gkVwhDpl0C
http://scholar.google.com/citations?view_op=view_citation&amp;hl=en&amp;user=4GFQzXIAAAAJ&amp;citation_for_view=4GFQzXIAAAAJ:d1gkVwhDpl0C


Duyck et al. EURASIP Journal onWireless Communications and Networking 2012, 2012:350 Page 20 of 20
http://jwcn.eurasipjournals.com/content/2012/1/350

21. D Duyck, D Capirone, JJ Boutros, M Moeneclaey, Analysis and
construction of full-diversity joint network-LDPC codes for cooperative
communications. Eur. J. Wirel. Commun. Netw. 2010(Art ID 805216,
2010 ). http://jwcn.eurasipjournals.com/content/2010/1/805216

22. D Duyck, D Capirone, JJ Boutros, M Moeneclaey, in Proc. IEEE Intern.
Symp. on Personal, Indoor andMob. Radio Comm. (PIMRC). A full-diversity
joint network-channel code construction for cooperative
communications (Tokyo, Japan, 2009), pp. 1282–1286

23. DNC Tse, P Viswanath, Fundamentals of Wireless Communication.
(Cambridge University Press, Cambridge, 2005)

24. JJ Boutros, presentedat Controlled doping via high-order rootchecks in
graph codes, IEEE Communication Theory Workshop Sitges. (Catalonia,
Spain, 2011). Available online from http://www.josephboutros.org/
coding/root LDPC doping.pdf

25. D Duyck, Design of LDPC codedmodulations for wireless fading channels.
Ph.D. dissertation. (Ghent University, Ghent, Belgium). in Press (to be
published in 2012)
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