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Abstract

This article deals with the frequency assignment problem (FAP) in slow frequency hopping (GSM) networks, a
generalization of the classical FAP. Due to symmetry in the solutions, a natural integer linear programming
formulation does not yield a good solution procedure. Instead, we decompose the co-channel and adjacent channel
interference minimization and develop a two-stage algorithm. The co-channel optimization problem is solved with a
column generation model, whereas the second stage is solved by a cutting plane approach. Computational
experiments reveal, that although no optimal solutions can be guaranteed, the approach provides promising results,
both regarding practical applicability and further research potential.
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Introduction

Mobile communication, as a key aspect of modern society,
looks upon a history of success and growth. Consequen-
tially, a wide range of organizational questions, connected
to a network’s structure and usage, have been in the focus
of research ever since. This article concentrates on fre-
quency planning. Mobile communication physically takes
place in the radio spectrum. This spectrum is a limited
resource, it can only support a finite number of fre-
quencies. Consequently, a sensible assignment of these
frequencies to signal emitters is necessary. On the back-
ground of GSM technology or modified for more modern
standards like WLAN, UMTS, and LTE, the settings of the
classical frequency assignment problem (FAP) have com-
monly been accepted as an insightful point of research for
questions related to FAPs. FAP focuses on the optimiza-
tion of mobile communication quality by means of min-
imizing mutual (co- and adjacent channel) interference
between signal transceivers (TRX).

Clearly, the FAP is a highly abstracted model of reality.
In this article, the difficulties of obtaining these (interfer-
ence) values and other influencing factors of communi-
cation quality among power control techniques, adaptive
modulation, or channel utilization are not treated in
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detail. However, especially the topics adaptive modula-
tion and power-control play important roles in resource
management and are closely related to questions of
transmission quality since both have a direct impact on
interference measures. We refer to [1-3] for in-depth
information on adaptive modulation and to [4,5] for infor-
mation on power-control techniques. In this article, we
focus on the abstract mathematical optimization prob-
lem and assume these influences sufficiently clarified
beforehand.

While the FAP considers a static assignment of fre-
quencies to signal emitters (one channel per TRX), the
concept of slow frequency hopping (SFH) is going beyond
this one-to-one mapping and assigns multiple frequen-
cies to each TRX. In SFH, a TRX does not transmit
permanently on one frequency, but changes its trans-
mitting frequency within a specific frequency pool at
random periods. Hereby, the main goal of FAP persists:
minimizing the total expected (mutual) interference of
these assignments. The focal point of SFH, randomiza-
tion, incorporates statistical effects, leading to interfer-
ence and frequency diversity. Basically, this means that
frequency-related characteristics are averaged. For exam-
ple, signal-spreading is highly frequency related, such that
the extreme peeks in signal distribution are cut off by
SFH on average. Signals at a specific location are no
longer either very bad (unusable) or very good (ineffi-
cient) the whole time, though bad conditions on isolated
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time frames are still very possible since they can be eas-
ily corrected via error recognition codes. Here we refer
to [6-8] for more information. Thus, randomization effec-
tively lowers the network’s signal-to-noise ratio, resulting
in an increased capacity or improved transmission quality
compared to non-hopping networks. In the following, this
problem is denoted with SFH-FAP.

In this study, the problem of finding frequency assign-
ments for SFH networks is formulated by means of mixed
integer programming. Hereby, SFH-FAP is interpreted as
an advancement of FAP (see [9] for a survey on FAP).
Since a column generation approach is invoked here, the
work of Jaumard (and others) is to mention, for exam-
ple [10-12]. There, a similar problem is analyzed, enriched
with the aspects of antenna spacing but reduced to inter-
preting interference values not as floating numbers but
only as integer levels (interference possible from 0 to 10).
Performing column generation as well, their approach is
closely related to the graph coloring problem in Mehrotra
and Trick [13].

Concerning SFH-FAP, frequency planning has been
done on a heuristic basis, mostly. Here one could mention
the papers [14-16]. There, frequency assignments are cre-
ated by the means of frequency lists for each transceiver,
which are created and improved on a heuristic basis (e.g.,
by simulated annealing). While these methods are usu-
ally fast, they cannot claim to provide optimal frequency
assignments. In contrast to these approaches, this arti-
cle tries to invoke exact methods for obtaining optimal
frequency assignments. Therefore, advanced optimization
concepts like column generation and cutting plane algo-
rithms are used. Though frequency assignments can be
provided, no guarantees of optimality can be given. Never-
theless, this article analyzes the usage of the chosen means
and points out future research potential. On the whole,
this study is based on the master thesis of Tieves [17].

In the following, the problem description is formal-
ized and a mixed integer formulation is given. Next, the
problem is decomposed into two sub-problems, treated
consecutively. The resulting optimization procedure is
evaluated for modified test examples from the FAP web-
site [18]. At the end of this article, some conclusions of this
approach as well as future research proposals are given.

Problem description

First, the input of the classical FAP is briefly summarized
and the SFH-FAP input is evolved from this. A math-
ematical problem description is presented, leading to a
mixed integer formulation of this problem at the end of
the section.

Frequency assignments in GSM networks
A detailed description of the FAP problem in GSM net-
works can be found in [19]. There, the FAP is deeply
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explained and information are given, how the model,
i.e., the interference values can be derived from reality.
Here we focus on the abstracted mathematical optimiza-
tion problem and invoke no deepening research on these
matters.

From a mathematical perspective, an instance of the
FAP can be interpreted as an undirected graph G = (T, E)
and a set F of available frequencies. We assume that the
frequencies are equally spaced in the radio spectrum. The
vertices v € T represent the signal emitters (TRXs). For
every edge e = {v1,v2} € Ewithvi,vp € T, co(vi,v2) > 0
and ad(vi,v2) > 0 define the amount of co- and adja-
cent channel interference, which is induced if both TRXs
transmit on the same, respectively, neighboring frequen-
cies. Further a separation distance d,,,,, € N might be
defined for edges {vi,v2} € E, specifying the minimum
distance between the transmissions of v; and v in the fre-
quency spectrum. For every vertex v € T, a set of (locally)
blocked frequencies B, C F might be defined, contain-
ing the frequencies which cannot be assigned to this TRX.
The aim is to find a frequency assignment, i.e., a mapping
of one frequency f € F to every TRX v € T, such that the
separation and blocking constraints are met and the total
induced co- and adjacent channel interference is minimal.
In this context, the interference values can be interpreted
as costs or penalties as well.

SFH
For a FAP-SFH instance, as a generalization of the FAP
problem, we assume that two additional inputs are com-
plementing the FAP input. First, a partition of the TRXs
is provided, i.e., a collection S = {I1,...,I,} withI; € S,
UYL =T and; NI; = @ for all i # j. For each i the
set of TRXs [; is called super transceiver (STRX) in the fol-
lowing. Second, for every I € S a value k; € N denoting
the required amount of frequencies of this STRX is given.
As an interpretation: Each TRX v is in one STRX I and at
every time frame, v chooses a frequency f to transmit on,
out of the k; available ones, at random uniformly and inde-
pendently distributed. Hereby the STRX structure shows,
which TRXs may potentially choose the same frequencies.
Now an assignment should be provided, which assigns
kr frequencies to every STRX I such that the quality is as
good as possible, i.e., the total interference is as low as
possible. However, the amount of interference in a FAP
instance on a link between two TRXs can be measured any
time, but the amount of interference between two STRXs
I and J is not a fixed value any longer, due to the random-
ization concept of SFH. Judging an assignment’s quality,
various measures like expected-interference or worst-case
interference are possible. Because of the frequency at
which a TRX can change its frequency (7.5/13 ms, see
[19]), we assume that the expected interference is a rea-
sonable choice, since the user can only experience an
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averaged quality—the single time-frame cannot be distin-
guished by the human ear. Because of the randomization,
in every single time-frame the frequency assignment pro-
duces a higher interference level compared to a FAP
assignment, however the frequency hopping gain sur-
passes the higher average interference. Nevertheless, we
assume the expected interference as a suitable measure
for obtaining frequency assignments. For each pair of
STRXs I and J, these expected co- and adjacent channel
interferences co(I,J) and ad(l,]) can be determined as
follows.

Given a frequency f assigned to both STRX I and STRX
J, the probability that two TRXs v € [ and w € J
choose this frequency simultaneously is ﬁ, inducing a
co-channel interference co(v, w). Hence, the expected co-
channel interference is co(Z,]) - y1; where y;; denotes the
number of equal channels assigned to / and J and

1
co(l,]) := Z Z m -co(v, w). (1)

vel weJ

Similarly, the expected adjacent channel interference is
ad(l,]) - n;j where nj is the number of adjacent channels
assigned to I and J and

ad(l,]) :=ZZ 1 ad(v,w). (2)

vel we] kI ' k]

Summing up the differences between FAP and SFH-FAP,
the interference on TRX level is aggregated to the STRX
level such that the induced interference between two
STRXSs is the total (expected) interference of the inbound
TRXs. Nevertheless, an SFH-FAP instance is similar to an
FAP instance, with the difference, that for the nodes corre-
sponding to an STRX more than one frequency per node is
needed and the edge-weights are adapted in the above way
(1), (2). The downside of this aggregation lies within the
separation and blocking constraints. When aggregating
the TRXs to the STRX level, separations may be specified
between two STRXs (denoted with d;; € N) or between
each TRX within a STRX (denoted by d; € N). How-
ever, since the frequencies for each TRX in the STRX are
drawn at random, no separation can be guaranteed on the
inner TRX level any longer. Furthermore, separations on
the STRX level hold for all TRXs within these STRXs such
that not all constraints can be aggregated and those which
are lifted to the STRX level may be more striking than
before. Additionally, the same applies for the blocking
constraints.

Note that these disadvantage arises from considering
arbitrary STRX structures. Establishing a frequency hop-
ping structure in a network, it is always possible to regard
each single TRX as STRX. Then, all separations/blocking
constraints can be transported into that framework. How-
ever, the mathematical consequence is a greatly enlarged
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problem size. In practical aspects, some trade-off between
problem-size and correctness is reasonable. Incorporat-
ing SFH at the expense of some inaccuracy within the
constraints may still improve the overall network quality.

As an example of this transformation, one may consider
Figure 1. Given the set of TRXs as 7 := {1,...,7}, the
set of all STRXs may be formed of three STRXs & :=
{I, I, I3}. In this example, I consists of the TRXs one to
three, I, contains four and five and STRX I3 consists of
the remaining TRXs. The relations (co-, adjacent chan-
nel interference, separations, and blockings) on TRX level,
here shown as dotted, are aggregated to STRX level (red
lines) via the procedure mentioned above. The random-
ization of SFH is incorporated in the STRX relations, the
interference values are expected values and no fixed, mea-
surable information any longer. For clearness sake, the
interference relations “within” a single STRX have been
omitted. Given a STRX I, co(l,]) is a constant for every
frequency assigned, determined by the STRX structure,
i.e., the inbound TRXs. For the expected co-channel inter-
ference, this constant is multiplied with the amount of fre-
quencies to be assigned, an other constant (y;; = k;). As a
result the co-channel interference value within a STRX is
already determined by the STRX structure and indepen-
dent from the specific frequency assignment. However,
inner STRX adjacent channel interference is not a con-
stant and can be determined as described in (2).

In summary, SFH-FAP aims to find an optimal fre-
quency assignment, i.e., assign at least k; frequencies f €
F to every STRX I such that the expected induced inter-
ference is minimal, all separation/blocking constraints are
met and the totally induced expected co- and adjacent
channel interference is minimal. This can be formalized as
follows.

The input for the SFH-FAP problem is a nine-tuple
M := (S,E, F,{Bi}jes » k1, dr1,dr ], co,ad). A feasible solu-
tion, i.e., a feasible assignment, is a function

Y:S — 2f,

mapping each vertex to a set of frequencies such that

Y =k VIeS, (3a)
Y () CF\B; VIeS, (3b)
i—fl =d VI € S, f1,fo € Y(Dwithfy # fo,
(3c)
fi—fl =diy  YILINeSXS.fieY(D).HreY().

(3d)

Given the above tuple and denoting the set of neighboring
STRXs for two STRXs I and J by

NyY)={(fLfp) eF:[i—fal =LA YWD, YD)},
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Figure 1 TRX to STRX graph. Shows the transformation from TRX to STRX level.

the FAP for SFH networks (FAP-SFH) is

min 3 Y YD) N YD cod,]) + Y INiy(Y)]

IjesS IjesS
-ad(l,]) : Y satisfies (3a) — (3d)

A mixed integer formulation
Given the described input, the FAP-SFH problem can be
formulated as a mixed integer linear program (MILP). The
following variables are used:

1, fusedat] VIcS,feF
xpf = €S, f eF.
1f 0, else
1, fusedat]and/
zZryf = VI,JeS,feF.
0, else
2, fusedatl, bothf+1andf — 1 usedat/
brjp =11 fusedatl, either f + 1orf —1usedat]
0, else

VI,JeS,f eF.

yr; = number of equal channels at 7 and /.
=l{feYDIf e Y}
nr; =number of adjacent channels at I and J.

={feYDf+1vf-1€Y(}

Note that this directed relations could be transformed
into undirected relations as well. However, this leads to
the following MILP:

minz Zco (L)) -yrg+add,]) -niy

Ie§ Je§
sty xp =k VieS (5a)
feF
zryf = xpf+x50— 1 VI,JeS,feF (5b)
ZZI']f =31 A I,] eS (5C)
feF
b[,],f22'x1f+x],f_1+x]f+1—2 VI,JeS,feF
(5d)
> by =mniy VI,JeS (5€)

feF

X +xrp <1 VIieS fi,heFi—fl<d

(5f)
X X6 < 1 VI,]GS,ﬁ;szF,[fl—fz|§d1J
(5g)
x = 0 VIeS,feB. (5h)

The objective function minimizes the total (expected)
interference. Constraints (5a) ensure that every STRX gets
enough frequencies. In (5b) and (5d), common- and adja-
cent channels are recognized. These channels are summed
up in (5¢) and (5e), respectively, for the number of equal-
or adjacent channels. Further, constraints (5f) and (5g)
model separation requirements. Hereby constraints (5f)
represent the separation requirements between the fre-
quencies of one STRX (inner STRX separation) and con-
straints (5g) describe the necessary separations between
the frequencies of two different STRXs (outer STRX sep-
aration). Finally, constraints (5h) represent the blocked
frequencies per STRX. Henceforth, this model is referred
to as [FAPSFH].
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While this formulation is straightforward, it bears some
major drawbacks preventing computability for practical
scenarios. The model consists of O(|S|? - |F|) variables
and constraints of the same order. Bearing in mind that
practical instances may have hundreds of STRXs and fre-
quencies, memory restrictions are challenging. Further,
a formulation with penalty variables, for example recog-
nition of interferences via constraints of the type: A A
B & C like in (5b), (5d), is impracticable. Since the lin-
ear relaxation of such a formulation has a value of zero
(due to the fact that the penalty variables are avoidable by
fractional values on the decision variables), the solution
process is effectively rendered to an enumeration of the
integer solutions, which is inappropriate for realistically
sized instances.

Decomposition into two stages

Since the above presented formulation is not applicable in
practice, a reformulation by a Dantzig-Wolfe reformula-
tion is a promising alternative. The resulting formulation
has an exponential number of variables, implying that
dynamic column generation has to be used. In the last
decade or so, column generation methods have become
very powerful to solve large-scale MILPs. In the case of
FAP-SFH, column generation can be applied most effec-
tively if the problem is first decomposed into two sub-
problems. For this purpose, the separation and blocking
constraints are emitted and the interference calculations
are ordered. First a minimum co-channel interference
assignment is created, which is then adapted to min-
imize adjacent channel interference without increasing
the co-channel interference. The results of this two stage
approach are not equivalent to those of the [FAPSFH]
model, but computability is enforced as a trade off.

In this approach, the first problem determines which
STRXs share the same frequencies without specifying
their actual frequencies, only with respect to co-channel
interference minimization. Then, in the second stage, this
assignment is re-optimized considering adjacent chan-
nel interference. This is possible because the co-channel
interference is independent of the specific frequency,
whereas the adjacent channel interference is derived only
from the exact frequency allocation. If it is known which
STRXs share how many frequencies, the co-channel inter-
ference can already be calculated, but for adjacent channel
interference, the specific allocated frequencies have to be
known.

Co-channel interference minimization

A problem description of the first stage problem can
be obtained by restricting the SFH-FAP problem to co-
channel interference (and omitting adjacent channel inter-
ference and separation/blocking constraints). Formally,
the (restricted) input can be described as a six-tuple Q :=
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(S, E, F, ki, co), with the same notations as above. Similar,
the first stage problem is defined by

min : Z YD) NY ()| - co(l,]) Y() =k

IjeS

Since the total interference is only dependent on the size
of the intersection of the assigned frequencies of each two
STRX, it is sufficient to determine which STRX share how
many frequencies. With this knowledge, one can state,
which sets T C S of the STRXs share how many frequen-
cies and derive the total co-channel interference of the
assignment from this information. For example, informa-
tion of the type “a set of STRXs T := {Iy, I}, I,,,} shares two
frequencies” means that two of the available frequencies
are assigned to each of the inbound STRXs of T but to no
other STRX. If this information is available for the com-
plete number of frequencies, the co-channel interference
can be determined, i.e., the exact common frequencies are
not of interest (we refer to [17] for more details). Con-
sequentially, the problem basically boils down to a vertex
multi-coloring problem with a limited number of colors,
i.e., the frequencies [20]. This problem can be described
via the following MILP, where x7 € Z. denotes how many
frequencies the STRXs in T, and only those in 7, have in
common. Note that the corresponding dual variables ()
are shown as well, as they are needed in the following.

min Z co(T) - xr

TCS

s.t. Z x1 = kg

TCS
IeT

> xr = |Fl[ o]

TCS

(6a)

VvIeS[n] (6b)

(6¢)

The amount of induced interference of each set T is
denoted by co(T), which is calculated by means of the
STRX interference values as

- ppewn- EEEE(; )

IeT JeT 1eT JeT vel we]
x co(v, w).

For the sake of completeness it is mentioned, that the con-
straints (6b) and (6¢) can be formulated as inequalities,
with > and <, respectively, as well. Assume an optimal
solution given, whereas one constraint I of (6b) is not ful-
filled with equality. So STRX I can be omitted in at least
one set 7, for which holds I € T, xr > 0. By co-channel
interference definition, it holds that co(T1) < co(T,) if
T1 C To, the induced new solution fulfills this constraint
with equality and is at least as good as the first solution.
Similar applies to constraint (6¢). Assume one frequency
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was not used, it is always possible to split a set S into two
sets S1 and Sy with S U S, = S, S1 NSy = @ and adapt
the solution via xgs = 0 and x5, = x5, = 1. Again by
definition, co(S) > co(S1) +co(S3), such that the new solu-
tion, which fulfills (6¢c) with equality, is optimal as well. As
a result, even when formulating via inequalities, there is
always an optimal solution, which would satisfy the equal-
ities as well. Since the formulation via equalities is more
intuitive, we stick to this formulation in the following.

Note that this model, denoted with [FAPH1], has sig-
nificantly less constraints than the [FAPSFH] model but
exponentially many variables. Before going into detail,
the example presented in Section “SFH” is extended for
clearness sake. [FAPH1] contains variables for every sub-
set of S = {I1, D, I3}. Assume that potential separation
and blocking constraints have been omitted like described
above and that

kr=2 vies,
F=1{1,2,3,4}, co({[})=0 Vie{l,2,3)},
co({I;, }}) =1 Vije{1,23},

co({l1, I, I3}) = 3.

Obviously, every solution will induce an interference value
strictly above zero, since at least two STRXs will inter-
fere each other. An optimal solution of the LP relaxation,
which is already integer, is given by

XL} = X(13) = 2
Xy = X{L) =X{D,I) = X113} = ¥, Ip,13) = 0.

Therefore, STRX I3 is assigned two frequencies and
STRXs I and I3 have two other (but each the same) fre-
quencies assigned. However, the specific frequencies have
not been determined, yet.

On a side note, this example visualizes the strength of
[FAPH1] over the [FAPSFH] formulation. In the linear
relaxation of [FAPSFH], the solution x; = 0.5 for all TRX
I and all frequencies f is optimal, and extended to the
other variables, has an objective value of zero, opposed
to the LP-solution of [FAPH1] presented above. Conse-
quently, the [FAPH1] formulation is preferable, since the
solution of its linear relaxation is in general closer to the
integer solution value.

Nevertheless, the [FAPH1] formulation has the disad-
vantage, concerning computational accessibility, of expo-
nentially many variables. This is a classical setting for
column generation to solve the linear relaxation (LP).
In column generation only a subset of all possible vari-
ables is initially used and loaded into memory. The linear
program is solved on that subset and it is determined,
whether a variable (outside of that subset) with negative
reduced costs exists. If such a variable can be found, it
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is added to the already known variables and the process
starts again. If no improving variable can be found, the
LP solution must be optimal. The critical point in this
approach is the problem of finding variables with nega-
tive reduced costs, without generating the corresponding
variable (column) beforehand. This problem is called the
pricing problem. On a theoretical view, if the pricing prob-
lem can be solved in polynomial time, the LP relaxation of
(6a)—(6¢) can be solved in polynomial time [21]. However,
the stable set problem, which is NP-complete [22], can
be reduced to the pricing problem of [FAPH1]. Neverthe-
less, the advantage of this procedure is that it is possible
to work on a subset of all variables (from a computational
point of view), only, avoiding memory restrictions because
of theoretically exponentially many variables. For a survey
on column generation, see [23] or for the related vertex
coloring example [13].

For such a column generation approach, a starting solu-
tion with a set T’ containing all variables is feasible, i.e., all
STRXs are mapped to the same set of frequencies; hence,
the solution will have very high costs. Then, additional
variables/sets are added as long as variables with negative
reduced costs can be found. Given a feasible (LP) solution
and the corresponding dual values 7, the proof that such
variables exist can be derived from the pricing problem
[FAPHPR]:

minZZco([,]) ~zry — Zﬂ'['x] — 7o

IeS Jes IeS

st.ozrp = xr+x7—1 VI,JeS,
zry € {0,1} VI,JeS,
x; € {0,1} VIeS.

This MILP determines a set 7" with minimal reduced
cost. The constraints model a variable of the original LP,
i.e., a set of STRXs and the objective function indicates
the reduced costs, namely this variable’s original objec-
tive coefficient minus the product of the dual values and
the corresponding matrix column. Hereby, the variables
x; determine, similar to a characteristic vector, whether
STRX I is contained in T and the z;; calculate the induced
interference for the corresponding objective coefficient.
A variable with negative-reduced costs exists if and only
if the MILP has a solution with an objective value strictly
lower than zero. In this case the variable/set is given by
the characteristic vector x, namely T := {I € S : x; = 1}.
Note that any solution with negative reduced costs is suf-
ficient for creating a new variable, which might improve
the current solution. Since the reduced costs measure the
relative improvement from one basis solution to another,
but not the quality gain towards the optimal solution, no
predictions concerning the long-run performance of the
new variables can be made on basis of the reduced costs.
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Hence, a heuristic solution of [FAPHPR] to find a negative
reduced cost variable is usually sufficient. Only to guaran-
tee LP optimality in the end, [FAPHPR] has to be solved
to optimality.

By the above described procedure, the LP relaxation can
be solved. For obtaining optimal integer solutions pricing
has to be combined with a branch and bound algorithm.
Hereby it might be needed to add new variables in each
node, again. Combined, this approach is called branch &
price.

Adjacent channel interference minimization

In the following, we assume a solution T:={T CS:
x1 > 0} for the first stage problem given. In this solution,
the induced co-channel interference is already determined
together with the sets of STRXs sharing the same frequen-
cies. For obtaining a final assignment, specific frequencies
have to be assigned to these sets such that the induced
adjacent channel interference is minimal. Formally, the
input can be given as a four-tuple R := (T, F,xT, ad). Here
F and T are used as described above. Furthermore, for
every set T € T the value x7 from the first stage prob-
lem denotes the amount of frequencies, which should be
assigned to T. The adjacent channel interference values
between two sets S, T € T (note: not necessarily S # T)
can be aggregated similar as the co-channel interferences
via

ad(S,T) : = ZZad(l,]) = ZZZZ /q%k]

1eS JeT IeS JeT vel wej
VS, T € S.

x ad(v, w)
A feasible solution/assignment to this input is a function
Y: T — 2F,

mapping each set uniquely to one or more frequencies.
Then, the second stage problem is defined by

Y > INsT ()| -ad(S,T) : [Y(T)| = xr
min SeT TeT

YVTeT,Y(T)NY(S) =@ VS, TeT

whereas Nsr7(Y) denotes the set of adjacent channels
from S in T in the assignment Y via

Nsy(Y):={(f. D eF : [i-fl=LA € Y(S).Lr € (D)},

the above problem can be formulated as traveling sales-
man problem (TSP), as follows. To explain, first let us
assume that every set 7' of STRXs has only one frequency
in common (x7 binary, see below for an analysis of the
general case). Each set T is now interpreted as a vertex in
a new graph (7, F). Each of these vertices is connected to
all other vertices with the induced adjacent channel inter-
ference as the weight. Furthermore, a dummy vertex with
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distance zero to all other vertices is added. Recall that
adjacent channel interference is determined by the infor-
mation which STRXs transmit on neighboring frequen-
cies. So, each frequency can only interfere with two other
frequencies and the interference is only dependent on the
STRXs mapped to these frequencies. For example, fre-
quencies 4 and 5 induce the same adjacent channel inter-
ference as frequencies 8 and 9 between the same STRXGs.
As a consequence, finding an assignment with minimal
adjacent channel interference is equivalent to finding a
shortest tour visiting all vertices in the constructed graph.
The sequence of vertices visited corresponds to the index
of the assigned frequency. Starting from the dummy ver-
tex, all STRXs in the first vertex visited are assigned the
first frequency of F, the second vertex visited determines
the STRXs which get the second frequency assigned and
SO on.

In case a set T requires more than one (x7 > 1) fre-
quency, the vertex corresponding to T has to be replaced
by x7 many copies. The new vertices are connected to
each other with weight ad(T, T) and to every other ver-
tex S with weight ad(T, S). Consequently, every instance
constructed in this manner has exactly |F| + 1 vertices.

For an example, the example from Section “SFH” is
continued. As stated in Section “Co-channel interference
minimization’, the optimal solution from the first stage
was x5, ,) = %) = 2and x7 = 0 for all other T C S.
Thus, T := {{I1, b}, {I3}}. After calculating the induced
adjacent channel interference ad({l1, [}, {I3}), the corre-
sponding TSP instance is presented in Figure 2. There,
each of the elements of 7 demands two frequencies such
that the corresponding vertices have to be copied two
times.

A result of this example could be as follows.

Tour: Dummy — {I1, I} — {I3} — {I3} — {11, [} > Dummy
= Total adjacent channel interference: 2 - ad ({11, I}, {I3})
+ ad({I3}, {I3})
= Assignment: I; — {1, 4}
I — {1,4}
I3 — {2,3}

Depending on the values of ad(l;, 1), this solution might
be optimal.

Since the TSP is well studied [24], various mixed inte-
ger formulations are known, such as a sub-tour elimina-
tion formulation, which have proven to be applicable in
practical circumstances. For a ready-to-use implementa-
tion, we refer to the SCIP implementation [25] or the
CONCORDE solver [26]. Nevertheless, the formulation as
derived above does not impose a metric on the resulting
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Figure 2 Second Stage Problem as TSP. Example of the TSP formulation of the second stage problem.

graph, such that these implementations cannot be used
straight forward. As a result, we stick to the sub-tour elim-
ination formulation in this matter. The sub-tour elimina-
tion formulation contains exponentially many constraints
such that a separation approach is preferable. Separation
of cutting planes means that the LP is only solved on a
subset of all constraints. When a solution is available, it
is checked whether an inequality is violated, which is in
return added to the LP again and the process restarts.
If no violated inequality exists, the LP-solution must be
optimal. Similar as with the column generation approach,
this concept helps to bypass memory limitations arising
through exponentially many constraints. In fact, cutting
planes and column generation are dual concepts. Again,
the complexity of solving the LP relaxation depends on
the computational complexity of the separating problem
[21]. In this case, it can be solved, i.e., recognizing a
violated sub-tour, in polynomial time. For more detailed
information on cutting plane algorithms, we refer to [27].

In the context of MILP, cutting plane algorithms are
mostly used to solve the linear relaxation of MILPs. For
obtaining feasible integer solutions, it is necessary to com-
bine cutting planes with a branching approach, i.e., every
node is solved by cutting planes and it is then branched
for integrality. Hereby, in any node different cutting planes
might be added. On the whole, the combined method is
called branch & cut.

Computational results

In the following, it is explained why the decomposition
into two stages provides more meaning-full insights than
the first formulation. Nevertheless, an optimal solution
cannot be guaranteed.

Implementation details

The first stage problem [FAPH1] is degenerated. To be
more precise, the problem can be treated by primal
heuristics rather easily, because of the similarity to the
classic FAP, but an optimal solution by a branch and
price algorithm cannot be guaranteed. This is explained
in the following and the two main reasons are pointed
out. In general, there are two main problems, the first
corresponds to the incorporation of priced variables and
the second corresponds to the solution of the pricing
problem.

At first, we are describing the first reason. Within a
branch and price algorithm, assume a variable given that
is, in theory, improving the current basic solution (i.e.,
it has negative reduced costs). In general, these variables
are expected to enter the next basic solution in the sim-
plex algorithm. Nevertheless, in the [FAPH1] problem it
may not be used in the next basic solution, i.e., its value
remains at zero. This is based on the fact that the con-
straints are rather strict in the following sense: Assigning
a value above zero to one variable may force other vari-
ables to change their values as well. These other variables
are called correcting variables in the following, since they
“correct” the changes the improving variable induces if
used basic solution. In a column generation approach,
these correcting variables may not be available yet such
that the priced variable cannot be used. Additionally, these
correcting variables may not have negative reduced costs
in the current basic solution such that they are not rec-
ognized by the pricing problem. However, the reduced
costs are updated after adding a new variable yielding that
these variables will get negative reduced costs in the long
run. Consequentially, solutions of the pricing problem
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are added successively until these correcting variables are
all available. This may take arbitrarily many steps and is
therefore not applicable for realistically sized instances. To
our knowledge, no generic and efficient way of creating
these correcting variables is known. In the following, we
present some work around to this problem.

Given an improving variable, it is possible to cre-
ate correcting variables heuristically. For this purpose,
some modifications of construction heuristics, e.g., some
DSATUR variation [19,28] suffice to create enough sur-
rounding variables such that the improving variable can
potentially have a value above zero in the next basic solu-
tion. This means, given an improving variable, a totally
new assignment based on this variable is created and
the remaining variables are also added to the problem.
Obviously, these surrounding variables may not form the
best basic solution, with the priced variable contained,
concerning the objective value. Further and especially
concerning fractional solutions within the linear relax-
ation, the surrounding variables may not allow to use the
improving variable to its full extend, compared to the best
possible usage. Additional, since every assignment con-
tains |F| variables (compare constraint (6¢c)), adding one
improving variable by adding |F| — 1 others as well causes
a certain inefficiency or redundancy. Consequentially, the
solution process is slowed down. On the other hand, with
these surrounding variables an improvement process can
be constructed (see Section “Test results”), in which the
improving variables are really used and at every pricing
round, a primal solution is constructed. Hence, a pool
of feasible integer solutions is generated which is a clear
advantage over the [FAPSFH] formulation.

The second reason why no optimal solution can be
claimed is the difficulty of the pricing problem. While
it can be solved with reasonable effort at the beginning
of the pricing process (e.g., by greedy heuristics) it gets
increasingly hard to solve in the long run. Having variables
in the order of O(|S x S|) and only searching for a min-
imum weighted (edge and node) subgraph makes up for
a very difficult problem. As a result, the thorough solu-
tion of the pricing-problem can slow down the solution
process significantly in the long run.

All in all, these are the two main reasons, why the solu-
tion process is slowed down, such that no optimal solu-
tion, not even of the linear relaxation can be determined
for most test instances presented in this article.

This slow performance is often observed in column
generation algorithms. Measure for obtaining speedups
are known as stabilization techniques, some of which are
presented in [29]. In general, these techniques allow an
LP solution to violate the constraint matrix as long as a
sufficient penalty is payed. At the beginning of column
generation, this offers more (and potentially better) dual
solutions, while in the optimum, the penalties for violating
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the constraints are too high, such that the optimum is
the same as for the original problem. In our first stage
problem, we assigned an additional “slack variable” (fre-
quencies) to each constraint (6b), such that every STRX
may use frequencies, not counting against the limit (6c)
but with very high costs in the objective function. Con-
sequentially, the pricing problem could be solved faster
(at the beginning), such that there was no need for using
heuristics only. On the other hand, the solutions started at
a very high level of interference (compared to the original
approach) and improved too slowly relative to the original
approach, such that this stabilization techniques offered
no significant gain.

Further stabilization techniques, e.g., presented in [30]
advising alternative dual solutions for improving the pric-
ing problem could not be used successfully either, since
it is not trivial to find other dual solutions for our first
stage problem. All in all, we are not aware of any stabi-
lization techniques, significantly improving the first stage
problem.

In addition to the problems presented above, no lower
bounds or quality estimations on the linear relaxation can
be provided. Like presented in [23], a lower bound /b on
the linear relaxation can be computed by means of the
current LP solution x*, the minimal reduced costs (the
solution of the pricing problem) red,+ and an estimation
on the number of used (i.e., non-zero) binary variables |F|
in each solution:

b =x" — |F| - redy.

In a column generation framework, this lower bound
converges (from below) to the optimum of the linear relax-
ation (when the solution is optimal, the reduced costs
are equal to zero). Nevertheless, this bound needs some
fading-in before it can produce non-trivial results. This
means that /b can be negative easily, while zero is a trivial
lower bound in our problem. In our applications, no non-
trivial results could be provided, for instances not being
solved optimal. Hence, we are not able to give quality
estimations on our primal solutions.

However, the second stage can be handled easier. The
TSP instances in the second stage are very small with at
most |F| 4 1 vertices. Hence, the TSP can be solved by the
above formulation/separation approach. Contrary to the
first stage, the second stage is solved optimally.

Test environment

The test instances have been taken from the COST256
project, see [18]. Since these scenarios are instances for
the classic FAP, they do not incorporate SFH. Neverthe-
less, they offer the data on cell level, e.g., the TRXs are
grouped into cells and the relations are given on this cell
level and not for every single TRX. For creating SFH-
FAP instances, these cells have been interpreted as STRXs.
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Table 1 Overview scenario characteristics

Available Freq.

Name STRX
100% 50% 150%
Siemens] 506 75 37 112
Bradford-0-Eplus 1886 75 37 112
Koeln 264 50 25 75
Swisscom 148 68 34 102

Overview on the used SFH-FAP instances. The second column describes the
amount of STRXs, the third to fifth column denote the number of available
frequencies.

The number of requested frequencies of each STRX (k;)
has been set to the number of inbound TRXs plus four
since research on the gain of SFH indicates that most
improvement can already be accomplished by a fixed
amount of additional (to the number of inbound TRXs
per STRX) channels [6]. Furthermore, the interference
relations have been adapted as described in (1) and (2).
Separation and blocking constraints have been omitted as
reasoned in the beginning of Section “Decomposition into
two stages”

All computations were carried out on a 4x Intel(R)
Xeon(R) CPU W3540@2.93 GHZ machine with 12GB
RAM and a SCIP 2.11 implementation (with CPLEX 12.4
as underlying solver). Especially, this means that columns
are subject to aging, such that SCIP may delete unused
columns after a certain time. This is important, since cre-
ating huge amounts of variables (because of the additional
surrounding variables) would lead to a significant slow-
down otherwise. However, the code has not been explicitly
parallelized. As stop criterion a time limit of 100,000 s was
set or until the available memory exhausted, depending on
which condition occurred first.

Test results

Concerning the first stage, general statistics on the lin-
ear relaxation are given in Table 1. The second column
describes the amount of STRXs and the third to fifth col-
umn denote the number of available frequencies in three
different cases. Further, Table 2 presents problem charac-
teristics and solution values of its linear relaxation. The
left numbers denote the amount of induced co-channel

Table 2 Overview on first stage results
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interference and the right numbers the amount of created
variables (k for 1,000). Additionally, Swisscom was solved
optimal in all three versions while Bradford was aborted
due to memory restrictions in the pricing problem. Hav-
ing a closer look at statistics of the Siemensl instance,
the problems (degeneration) of the column generation
approach become visible. As Figure 3 shows and like
stated above, improving variables can be generated by
solving [FAPHPR] during each pricing step. Adding these
variables, together with heuristically generated correct-
ing variables, can improve the objective function steadily
(cf. Figure 4). Notably, both figures show a typical column
generation behavior, i.e., a declining improvement. Never-
theless, the solution process is far too slow (cf. Table 2).
While relatively many variables need to be added (the
improving and the correcting variables amount to at last
|F| additional variables per pricing step), the improvement
rate is diminishing. Consequentially not even the optimal
LP solution is reachable in most cases.

Nevertheless, because of the heuristic construction of
surrounding variables, a range of primal solutions is cre-
ated. The best, which are later passed to the second stage
are presented in Table 3. There, the left numbers denote
the amount of induced co-channel interference, the right
numbers the time (in seconds) when the solution was
found in the solution process.

Addressing the second stage, solution values are pre-
sented in Table 4. Given the best available, feasible solu-
tions from the first stage, the best solutions of the cor-
responding second stage are reported. The left numbers
denote the amount of induced adjacent channel inter-
ference, the right numbers the percentage of adjacent
channel interference with respect to the total interference.
As mentioned before, the second stage can be formulated
as a TSP problem such that a generally good solvability,
especially on small instances can be claimed. Hence no
deepening research is invoked here.

Even though the methodological research is in focus
here, some general conclusions from our results are drawn
in the following. For the instances Bradford, Koeln and
Swisscom the adjacent channel interference is marginal
compared to co-channel interference In the quality of the
decomposition approach. Only for the Siemensl instance

Name Best primal Sol. Val. # Columns generated

100% 50% 150% 100% 50% 150%
Siemens] 118 22.81 0.02 85.0k 143k 216.0k
Bradford-0-Eplus 133.94 468.08 55.03 5.0k 5.3k 5.8k
Koeln 37.16 113.62 16.19 5.7k 1.6k 10.8k
Swisscom 0.00 0.23 0.00 0.1k 0.0k 0.1k

Results of the linear relaxation of the first stage after 100,000 s of computation time. The left numbers denote the amount of induced co-channel interference and the

right the amount of created variables (k for 1,000).
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Figure 3 Improving variables found. The number of improving (negative reduced costs) variables per pricing step for the first stage problem in

the Siemens1 instance.

the adjacent channel interference is significant and an
integrated approach might be beneficial.

Interference values are heavily dependent on the num-
ber of STRXs as well as of the number of available frequen-
cies (combined with the particular interference relations).
Obviously more STRXs lead to a higher amount of total
interference while more frequencies reduce the interfer-
ence. However, concerning computational effort it is to say
that the amount of STRXs and the amount of frequencies

determine the difficulty of the first stage whereas the
second is only dependent on the number of available
frequencies.

In the following, we will shortly comment on the results
of our approach in relation to other methods. Since we
cannot provide a proof of optimality in most cases, we
refer to Table 5 for a comparison between our results and
results from a (exemplary) straight forward heuristic (for
the first stage). These solutions are obtained by a direct
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Figure 4 Solution Improvement per pricing step. The solution value relative to the pricing steps of the first stage problem for the Siemens!

instance.
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Table 3 First stage best primal solutions
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Name Best primal Sol. Val. Time (s)

100% 50% 150% 100% 50% 150%
Siemens] 1.62 23.27 0.11 5.5k 0.2k 11.0k
Bradford-0-Eplus 134.87 468.61 5557 4.0k 2.2k 1.3k
Koeln 39.32 115.14 17.98 0.0k 0.0k 1.0k
Swisscom 0.00 0.68 0.00 0.0k 5.0k 0.0k

The objective value of the best known integer solutions. The left numbers denote the amount of induced co-channel interference, the right numbers the time (in

seconds) when the solution was found in the solution process.

greedy (DSATUR) heuristic for the first stage problem and
then processed by the second stage. As one can see, the
results obtained by the means of mixed integer program-
ming are always better in the first stage. Because of the
two staged approach, a better first stage solution does not
correspond to a better second stage solution, such that
the same cannot be claimed for the second stage. Nev-
ertheless, only one instance was solved worse and the
overall solution of both stages is always but one time bet-
ter than the solutions produced by the greedy method in
the first stage. However, this can obviously not be claimed
for all heuristics, but this emphasizes the viability of mixed
integer programming for such problems. Especially since
each heuristic can be incorporated into a mixed inte-
ger programming approach, combining the strength of
both approaches.

Comparison to FAP

At the beginning of this article, SFH was introduced
and motivated on the background of the standard FAP.
In this section, the above-presented results are related
to the results of FAP, presented at [18]. Both prob-
lems are similar and produce interference results. How-
ever, these interference amounts are not straight forward
comparable. Without going into technical details, SFH
benefits from frequency- and interference-diversity and
in the end of error recognition codes. Especially this
means, that SFH networks can have single time-frames
on single connections with very high interference with-
out harming the overall speech quality, as long as the
other time-frames offer a connection “good enough”. The

Table 4 Overview second stage results

incorporation of random effects offers a gain towards
the classic FAP beyond the pure measure of interference.
However, this randomization formally leads to higher
interference amounts of the assignment, regarding total
numbers. This is explained in the following.

The FAP considers an optimal, overall assignment in
every time-frame. In slow-frequency hopping, the assign-
ment is changed at every time-frame, resulting in most
time-frames not having optimal assignment. Every single
time-frame is equal or worse compared to each FAP time-
frame, concerning interference values but no frequency
hopping gains. Consequently, the total expected interfer-
ence in SFH-Networks must be higher compared to FAP
networks. This can be illustrated by the following exam-
ple: Consider the “tiny” instance from the FAP website,
with the frequency spectrum set to {5,...,11} and the k;
values set to one (equal to FAP) and three, respectively.
This leads to the following solutions:

Solution k =1 :
X167 = X34 = X345 =%7 =1, x =3
Interference = 0;
Solution k = 3 :
X1,2,67 = X345 = 2
Interference =2 - Co({1,2,6,7}) + 1

x co({2,7}) = 2-0.03 + 0.03 = 0.09

Xy =X33 =%34 = 1,

Obviously the instance where k = 1 has a lower frequency
reuse factor, the average set size of STRXs sharing a fre-
quency is smaller compared to the other case. Since the

Name Best primal Sol. Val. % of total interference

100% 50% 150% 100% 50% 150%
Siemens] 3.17 9.83 137 0.66 0.30 0.93
Bradford-0-Eplus 834 20.78 433 0.06 0.04 0.07
Koeln .11 3.46 042 0.03 0.03 0.02
Swisscom 0.00 0.00 0.00 - 0.00

Given the best available, feasible solutions from the first stage (Table 3), the best solutions of the corresponding second stage. The left numbers denote the amount of
induced adjacent channel interference, the right the percentage of adjacent channel interference of the total interference.
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Name Frequencies First stage Second stage Total greedy Total pricing
Siemens] 75 1.98 3.39 537 4.79
Siemens1 37 24.12 10.01 34.13 33.10
Siemens] 112 0.18 1.24 1.42 148
Bradford 75 140.82 8.79 149.61 143.21
Bradford 37 470.51 2032 490.83 489.39
Bradford 112 56.79 4.29 61.08 59.90
Koeln 50 40.36 1.13 4149 40.43
Koeln 25 116.23 3.36 119.69 118.60
Koeln 75 19.18 042 19.60 18.40
Swisscom 68 0.00 0.00 0.00 0.00
Swisscom 34 1.04 0.00 1.04 0.68
Swisscom 102 0.00 0.00 0.00 0.00

Comparison to results obtained by a straight forward greedy-heuristic for the first stage. The overall best results per instance have been marked bold.

chance of interference rises quadratically in the amount
of STRX in a single set, the overall interference level rises
(though every single potential interference value is strictly
lower) if k increases. In other words, with a relatively low
k value it is possible to form sets of STRX having very
few (if any) interference relations not equal to zero while
at higher k values, i.e., demanding more frequencies to
hop, increases the set size and therefore the chance of
strictly positive interference values dramatically. In the
above context, this means that inducing randomization
will increase the probability of having a suboptimal assign-
ment in one time-frame, thus increasing the expected
interference.

In consequence, more (positive) interference values are
taken into account in SFH compared to FAP. Although
FAPH has smaller interference values per “link’, see (1)
and (2), this leads to an overall higher number of expected
interference, therefore making a comparison by pure
interference values misleading.

Conclusions

Drawing a final conclusion on the presented research, the
concept of SFH-FAP can be modeled by means of mixed
integer programming, similar to the classical FAP. Nev-
ertheless, realistically sized instances cannot be solved
and demand for more sophisticated approaches. Here, a
decomposition into two stages was proposed such that
the huge size of the problems can be engaged by a col-
umn generation and separating approach, respectively.
While this decomposition does not allow to obtain opti-
mal results in the first stage, by a sensible implementation,
a range of primal solutions/assignments could be pro-
duced which can be passed on to the second stage so that
the assignment can be finalized there. However, the prob-
lem is extremely hard so solve, as well in the perspective

of complexity theory as by practical aspects. Exponen-
tially many variables lead to column generation, whereas
the pricing problem is, because if its generality, very hard
to solve. The solutions of the pricing problem are (even
with stabilization techniques) not trivially incorporated
into the first stage problem, such that the improvement
rate is very slow and the optimum is not reachable.

Since the obtained results are not optimal, the whole
effort has a heuristic character, only. Hence, this approach
might be, because of the rather high computational effort,
inferior to a straight forward heuristic solution with-
out invoking the means of mixed integer programming.
Although we cannot claim an optimal solution, the bottle-
neck of this approach could be pointed out, namely a (fast)
solution of the pricing problems as well as the incorpo-
ration of newly priced variables into new basic solutions.
Future research, which bypasses this problem, could lead
to an optimal solution of the first stage such that the com-
plete frequency assignment in SFH networks could be
done evidently close to optimal.
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