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Abstract

Three-dimensional (3D) wireless sensor networks have attracted a lot of attention due to their great potential
usages in both commercial and civilian applications, such as environmental data collection, pollution monitoring,
space exploration, disaster prevention, and tactical surveillance. Topology control in 3D sensor networks has been
studied recently, and different 3D geometric topologies were proposed to be the underlying network topologies
to achieve the sparseness of the communication networks. However, most of these proposed 3D topologies
cannot bound the maximum node degree, i.e., some nodes may need to maintain a large number of neighbors in
the constructed topologies, which is not energy efficient and may lead to large contention. In this article, we
extend several existing 3D geometric topologies to a set of new 3D topologies with bounded node degree. We
provide both theoretical analysis and simulation evaluation on their power efficiency and node degree
distributions. Our simulation results over random 3D sensor networks confirm nice performances of these proposed
3D topologies.

1 Introduction
Due to its wide-range potential applications (such as
environmental data collection, pollution monitoring,
space exploration, disaster prevention, and tactical sur-
veillance), 3D wireless sensor network has recently
emerged as a premier research topic. Most current
researches in 3D sensor networks primarily focus on
coverage [1-4], connectivity [4,5], and routing issues
[6-12]. In this article, we focus on how to efficiently
control the 3D network topology to maintain both net-
work connectivity and energy efficiency of routes in 3D
wireless sensor networks.
Topology control [13-15] has been well-studied for 2D

wireless ad hoc and sensor networks in the past decade
[16-26]. Topology control methods allow each sensor
node to locally adjust its transmission range and select
certain neighbors for communication, while maintaining
a structure that can support energy efficient routing and
improve the overall network performance. Given the
dynamic nature of sensor networks, the topology should

be locally and self-adaptively maintained without affect-
ing the whole network and the communication cost dur-
ing maintaining should not be too high. There exist
several topology control techniques such as localized
geometrical structures [17-25], dynamic cluster techni-
ques [27-30] and power assignment protocols [31-37].
In this article, we focus on geometrical structures based
methods.
Though many 2D geometrical structures have been

proposed, surprisingly, there is not much study of 3D
geometrical methods for topology control in 3D sensor
networks, except for [38-44]. Bahramgiri et al. [38],
Ghosh et al. [42], and Poduri et al. [43] proposed meth-
ods based on generalized cone-based topology control
algorithm [17,20] to preserve connectivity in 3D sensor
networks, however, all of their 3D structures cannot
bound the node degree, i.e., some nodes may have large
unbounded number of neighbors. In addition, their con-
struction methods are complex. Wang et al. [39-41] and
Kim et al. [44] then proposed a set of 3D structures
based on Yao structures [18,19] in 3D space. These 3D
Yao structures can be constructed locally and efficiently,
and they do have bounded node out-degree. However,
none of these existing 3D structures can bound the
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node in-degree. Possible unbounded in-degree at some
nodes will often cause large overhead or contention at
those nodes which may make them exhausted earlier than
other nodes. Faced up with this challenge, in this article
we study how to efficiently construct 3D topology with
bounded node degree (both out-degree and in-degree) to
maintain connectivity, conserve energy, and enable energy
efficient routing. In particularly, we propose two general
frameworks: 3D Symmetric Yao Graph and 3D Yao and
Reverse Yao Graph, which are based on any existing 3D
Yao structures. We then theoretically prove that the new
3D structures built by our proposed method can guarantee
connectivity of the network, have a constant-bounded
node degree, and support energy efficient routes. We
believe that these structures are the first set of 3D struc-
tures that can achieve all of these properties.
The rest of this article is organized as follows. Section

2 introduces the network model and desired properties
of our 3D topology control problem. Section 3 provides
a brief review of related study on existing 3D topology
control methods. Section 4 presents the algorithms to
build 3D Yao-based topologies with bounded degree and
the theoretical proofs of their nice properties, such as
connectivity, degree bound, and power stretch factor.
Section 5 presents the simulation results on random 3D
networks and Section 6 concludes the article.

2 Network models and assumptions
A 3D wireless network consists of a set V of n wireless
nodes distributed in a 3D plane ℝ3. Each node has the
same maximum transmission range R. These wireless
nodes define a unit ball graph (UBG), or called unit
sphere graph, in which there is an edge uv between two
nodes u and v iff (if and only if) the Euclidean distance ||
uv|| between u and v in ℝ3 is at most R. In other words,
two nodes can always receive the signal from each other
directly if the distance between them is not more than R.
If there exists a link uv in UBG, v is a neighbor of u. All
neighbors of u form its one-hop neighborhood, denoted
as NUBG(u) or N(u). The size of NUBG(u) is the node
degree of u. We assume that all wireless nodes have dis-
tinctive identities and each node knows its position infor-
mation either through a low-power GPS receiver or some
other ways (such as 3D localization methods in [45-47]).
By one-hop broadcasting, each node u can gather the
location information of all nodes within its transmission
range. As in the most common power-attenuation
model, the power to support a link uv is assumed to be ||
uv||b, where b is a real constant between 2 and 5 depend-
ing on the wireless transmission environment.
Topology control protocols aim to maintain a struc-

ture H from the original communication graph UBG
that can preserve connectivity, optimize network
throughput with power-efficient routing and conserve

energy. The constructed topology H could be a directed
or undirected graph. In the literature, the following
desirable features of the structure are well-regarded and
preferred in wireless sensor networks:
(1) Connectivity: To guarantee communications

among all sensor nodes, the constructed topology H
needs to be connected, i.e., there exists a path between
any pair of nodes in the topology. This is the most fun-
damental requirement of topology control. Here, we
always assume that the original communication graph
UBG is a connected graph.
(2) Bounded node degree: It is also desirable that

node degree in the constructed topology H is small and
upper-bounded by a constant. If H is a directed graph,
both in-degree and out-degree should be bounded. A
small node degree reduces the MAC-level contention
and interference, and may help to mitigate the well-
known hidden and exposed terminal problems. In addi-
tion, if a graph has a bounded node degree, it is also a
sparse graph, i.e., the total number of links is linear with
the total number of nodes in the graph. A sparse graph
conserves more energy in term of maintaining the con-
structed network topology.
(3) Power spanner: A good network topology should

be energy efficient, i.e., the total power consumption of
the least energy cost path between any two nodes in
final topology should not exceed a constant factor of the
power consumption of the least energy cost path in ori-
ginal network [18]. Given a path v1v2 · · · vh connecting
two nodes v1 and vh, the energy cost of this path is∑h−1

j=1

∥∥vjvj+1∥∥β . The path with the least energy cost is

called the shortest path in a graph. A subgraph H is
called a power spanner of a graph G if there is a positive
real constant r such that for any two nodes, the power
consumption of the shortest path in H is at most r
times of the power consumption of the shortest path in
G. The constant r is called the power stretch factor. A
power spanner of the communication graph (e.g., UBG)
is usually energy efficient for routing.
(4) Localized construction: Due to limited resources

and high mobility of wireless nodes, it is preferred that
the topology can be constructed locally and in a self-
organizing fashion. Here, a topology is localized, i.e., can
be constructed locally, if every node u can decide all
edges incident on itself in the topology by only using
the information of nodes within a constant hops of u.
Actually, all construction algorithms of our topologies
presented here only use 1-hop neighbor information.

3 Related works
In this section, we briefly review the current techniques
of topology control in both 2D and 3D wireless
networks.

Li et al. EURASIP Journal on Wireless Communications and Networking 2012, 2012:157
http://jwcn.eurasipjournals.com/content/2012/1/157

Page 2 of 14



3.1 Topology control in 2D networks
With the objective of achieving energy efficiency and
maintaining network connectivity, several localized geo-
metrical structures have been proposed for topology
control in 2D wireless networks, such as local minimum
spanning tree (LMST) [21,22], relative neighborhood
graph (RNG) [48,49], Gabriel graph (GG) [48,50], Yao
graph (YG) [18,19], cone-based topology control (CBTC)
[17,20], Delaunay-based graph [23-25], and different
combinations of these graphs [51-53]. By constructing
such sparse topology structures, transmission power of
nodes can be minimized. As a result, the number of
links in the constructed topology is significantly reduced
compared with that of the original communication
graph which contains all links supported by the maxi-
mum transmission power. Among these 2D structures,
some are planar structures (such as LMST, RNG, GG,
and Delaunay-based graphs), some are power spanners
(such as GG, Yao graph, CBTC, and Delaunay-based
graphs), and some are with bounded node degree (such
as Yao graph).
Besides these localized geometrical structures, there

are also other various techniques proposed by research-
ers for topology control in 2D sensor networks, such as
how to construct a virtual backbone for routing [27-30]
and how to minimize the total transmission power while
maintaining connectivity or other properties
[31,32,36,37]. Since this article only focuses on localized
geometrical structures with bounded node degree, we
refer readers to some nice surveys [13-15] on topology
control for more details.

3.2 Topology control in 3D networks
Although geometric topology control protocols have
been well studied in 2D networks, the design of 3D
topology control is surprisingly more difficult than the
design in 2D. Current 2D methods cannot be directly
applied in 3D networks. Wang et al. [39,40] proved that
there is no embedding method mapping a 3D network
into a 2D plane so that the relative scale of all edge
length is preserved and all 2D geometric topology con-
trol protocols can still be applied for power efficiency.
Thus, any simple mapping method from 3D to 2D does
not work. On the other hand, many properties of 3D
networks require additional computational complexity.
Until recently, little research has been done on topology
control for 3D wireless networks.
To solely achieve the connectivity of a 3D network,

local minimum spanning tree (LMST) [21,22] may be
the best choice, since it is very sparse (with a bounded
node degree) and can be easily constructed even for 3D
networks and preserve connectivity. However, LMST
may have very large power stretch factor. Similarly, rela-
tive neighborhood graph (RNG) and Gabriel graph (GG)

can be easily extended to 3D, as shown in [39,40]. How-
ever, both of them do not have bounded node degree.
Bahramgiri et al. [38] generalized CBTC algorithm

from 2D to 3D to preserve connectivity. Basically, each
node u increases its transmission power until there is
no empty 3D-cone with angle degree a, i.e., there exists
at least a node in each 3D-cone of degree a centered at

u, if α ≤ 2π
3 . This algorithm can be extended to ensure

k-connectivity with α ≤ 2π
3k . Even though this approach

can guarantee connectivity, the gap detection algorithm
applied to check the existence of the empty 3D-cone of
degree a is very complicated. The time complexity of
the gap detection algorithm at a node u is O(d3 log d),
where d is the node degree of u. Moreover, their
method cannot bound node degree, as shown by [54].
Wang et al. [39,40] proposed a set of 3D Yao-based

topologies (FiYG and FlYG), which can be constructed
locally and efficiently. They proved some nice properties
of these 3D Yao-based structures, e.g., bounded node
out-degree and constant power stretch factor. Later,
Wang et al. [41] also extended all of their 3D structures
to support fault tolerance.
Ghosh et al. [42] also presented two CBTC-based

approaches for 3D wireless networks. Though the first
approach, a heuristic based on 2D orthographic projec-
tions, can provide excellent performance in practice, it
cannot guarantee connectivity for sure. In the second
approach, a spherical Delaunay triangulation (SDT) is
built to determine the existence of empty 3D cones.
Although the second approach can guarantee connectiv-
ity of the network, the expense to construct the SDT is
very high. Similarly, Poduri et al. [43] also used the
spherical Delaunay triangulation to find the largest
empty 3D cone in order to apply a CBTC-based topol-
ogy control. The expense of SDT construction makes it
inefficient in practice.
Recently, Kim et al. [44] proposed another localized

Yao-based structure with Platonic solid (PYG). The
basic idea is the same as the 3D Yao structures in
[39,40] except for the partition method of 3D cones. To
construct PYG, each node divides the 3D sphere neigh-
borhood into k equal cones by using regular k-polyhe-
dron and selects the neighbor that requires the lowest
transmit power in each cone. The authors also consider
the interference effects to adaptively choose the mini-
mum transmit power and adjust the topology. However,
such modification will break the connectivity and power
spanner guarantees of 3D Yao structures.
Overall, all of these existing 3D structures cannot

achieve bounded node degree. Notice that even though
3D Yao structures (including FiYG, FlYG, and PYG) can
bound the node out-degree, their node in-degree could
be as large as O(n) where n is the number of nodes in
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the networks. Faced up with this challenge, in this arti-
cle we study how to efficiently construct 3D topology
with bounded node degree to maintain connectivity,
conserve energy and enable energy efficient routing.

4. Degree-bounded 3D topologies: 3D symmetric
Yao graph and 3D Yao & reverse Yao graph
In this section, we propose two general frameworks to
build degree-bounded 3D topologies for wireless sensor
networks. The proposed frameworks basically apply the
existing 3D Yao structures via two techniques developed
in [19,23,55] for 2D topology control protocols. In addi-
tion, we provide detailed analysis on the degree bound
and power stretch factor of the proposed new 3D
topologies.

4.1 Review of basic 3D Yao structures
Our general frameworks to building degree-bounded 3D
topologies are based on any existing 3D Yao structure
(such as FiYG [39,40], FlYG [39,40] and PYG [44]).
These 3D Yao structures use certain types of 3D cones
to partition the transmission range of a node (which is a
sphere), and inside each 3D cone the node only keeps a
link to the nearest neighbor. Since the number of such
3D cones is bounded by a constant k, all of them can
bound the node out-degree by k. Here, k is a constant
depending on which method and parameter are used.
Basically, these structures can be categorized into two
sets: fixed partition and flexible partition.

3D Yao structures based on fixed partition
In fixed partition, 3D cones from one node do not inter-
sect with each other and the partition method is the
same for all nodes. In [39,40], Wang et al. first proposed
two methods to divides the transmission range of a
node into certain number of 3D cones. Figure 1a,b illus-
trates these two methods, which divide the transmission
ball into 32 and 56 cones, respectively. For each cone,
node u will choose the shortest edge uv Î UBG among
all edges emanated from u, if there is any, and add a
directed link −→uv . Ties are broken arbitrarily or by ID.
The resulting directed graph are denoted by FiY G32

and FiY G56, respectively. Notice that these cones in FiY
G32 and FiY G56 are different and do not intersect with
each other. In [44], Kim et al. then proposed another
type of fixed partition method which divides the unit
ball into k equal cones by using a regular k-polyhedron
and selects the nearest neighbor in each cone. The
resulting directed graph is denoted by PY Gk. Possible
polyhedrons include tetrahedron, cube, octahedron,
dodecahedron and icosahedron for k = 4, 6, 8, 12, 20
respectively. Figure 1c,d illustrates partition examples
with a octahedron k = 8 and a dodecahedron k = 12.
Notice that the cones in this method are with same
shape/size and do not intersect with each other. All
above methods based on fixed partition can be per-
formed locally using 1-hop neighbor information and
with O(d) time, where d is the number of 1-hop
neighbors.
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Figure 1 Definitions of 3D Yao Structures with fixed partitions. (a) and (b) show partitions of 1/8 of the ball in FiYG; (c) and (d) show
partitions using a octahedron or a dodecahedron for PYG.
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3D Yao structures based on flexible partition
In flexible partition, identical 3D cones with a top angle
2θ are used to partition the transmission ball and where
to define these cones depends on the locations of neigh-
bors around node u. In [39,40], Wang et al. proposed
three different methods to perform the partition. How-
ever, they showed that the first method does not bound
the node out-degree. Here, we just review their third
method. Initially, all neighbors vi of node u are unpro-
cessed and ordered by the distance to u. The algorithm
processes link uv from the shortest link and follows an
ascending order. When it processes uvi, it defines the
3D cone Cuvi which uses uvi as its axis (as shown in Fig-
ure 2a), adds the link uvi, and marks all other links in
Cuvi as processed. We denote the final structure as FlY
Gθ or FlYG when value of θ is clear. Algorithm 1 illus-
trates the detailed algorithm. The time complexity of
this algorithm is O(d log d) due to the sorting. Notice
that the 3D cones in this method are in the same size/
shape and can intersect with each other (as in Figure
2b). By using a volume argumenta, Wang et al. showed
that the node out-degree of FlY G is bounded by

k =

⎡
⎢⎢⎢⎢

2

1−cos

(
θ

2

)
⎤
⎥⎥⎥⎥ . If θ = π/4, the degree bound is

2

1−cos

(
θ

2

) ≈ 26
, and if θ = π/6, the degree bound is 58.

Algorithm 1. Construct 3D Yao Structure FlY G for
Node u
Input: all neighbors NUBG(u) of node u in UBG.
Output: neighbors NFlY G(u) of u in the constructed

FlYG.
1: Sort all neighbors vi Î NUBG(u) by its length such

that ||uvi|| ≤ ||uvi+1||, where i = 1 to |NUBG(u)|.
2: Set PROCESSED(vi) = 0 for all neighbor vi Î NUBG

(u).
3: for i = 1 to |NUBG(u)| do
4: if PROCESSED(vi) = 0 then

5: As shown in Figure 2a, let Cuvi be the cone using
uvi as the axis and 2θ as the top angle.
6: Keep vi as a neighbor of u in FlYG, i.e., add vi in

NFlYG(u).
7: Set PROCESSED(w) = 1 for every other neighbor w

inside Cuvi.
8: end if
9: end for
10: return NFlY G(u)

4.2 General frameworks to build 3D symmetric Yao graph
and 3D Yao & reverse Yao graph
Bounded out-degree from 3D Yao structures gives us
advantages when apply several routing algorithms on
these structures. However, possible unbounded in-
degree at some nodes will often cause large overhead or
contention at those nodes which may make them
exhausted earlier than other nodes. Therefore it is often
imperative to construct a sparse network topology such
that both the in-degree and the out-degree are bounded
by a constant while it is still power spanner. Hereafter,
we define a general function 3D-YAO-Structure() which
can generate the neighbor set of 3D Yao structure at
node u given the current neighbor set of u. The 3D-
YAO-Structure() function can be any generation meth-
ods of existing Yao-based 3D structures. We use YG to
denote the generated 3D Yao structure.
The first set of 3D topologies is 3D symmetric Yao

graph (SYG), an undirected graph, which guarantees
that the node degree is at most k. It first applies the 3D
Yao structure to select the closest node in each 3D
cone. An link uv is selected to graph SYG if and only if
both u and v are selected to be kept by each other in
YG, i.e., v Î NY G(u) and u Î NY G(v). See Figure 3a,b
for illustrations. Algorithm 2 shows the framework. It is
clear that only one-hop information is used and total O
(n) of messages are used. Thus, the SYG can be built
locally and efficiently. Notice that similar idea has been
used in 2D networks [23,55,56].
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Figure 2 Definitions of 3D Yao structures with flexible partitions.
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Algorithm 2. Building 3D symmetric Yao graph at
node u
Input: all neighbors NUBG(u) of node u in UBG.
Output: neighbors NSY G(u) of u in the constructed

SYG.
1: NYG(u) = 3D-YAO-Structure(NUBG(u)).
2: Broadcast NY G(u) to all neighbors NUBG(u).
3: for all node v Î NY G(u) do
4: if u Î NY G(v) then
5: Keep v as a neighbor of u in SYG, i.e., add v in NSY

G(u).
6: end if
7: end for
8: return NSY G(u)
Algorithm 3. Building 3D Yao and reverse Yao

graph at node u
Input: all neighbors NUBG(u) of node u in UBG.
Output: neighbors NYY G(u) of u in the constructed

YYG.
1: NY G(u) = 3D-YAO-Structure(NUBG(u)).
2: Broadcast NY G(u) to all neighbors NUBG(u).

3: Let Nin
Y G(u) be the set of u’s incoming neighbors, i.

e., all node v satisfying u Î NY G(v).

4: Nin
Y YG (u) = 3D - YAO - Structure

(
Nin

Y G (u)
)
.

5: Broadcast Nin
Y YG (u) to all neighbors NU BG(u).

6: for all node v Î NYG(u) do

7: if u ∈ Nin
YYG (υ) then

8: Keep v as a neighbor of u in YYG, i.e., add v in NY

Y G(u).
9: end if
10: end for
11: return NY Y G(u)
The second set of 3D topologies is 3D Yao and

reverse Yao graph (YYG), a directed graph, which guar-
antees that both node in-degree and node out-degree
are at most k. The basic idea is to apply reverse 3D Yao
structure on YG to bound the node in-degree. Node u
chooses a node v from each 3D cone, if there is any, so
the incoming link ←−uv in YG has the smallest length
among all incoming links from YG in that cone as
shown in Figure 3c. Similar idea has been used for 2D

networks by [16,19,57]. Algorithm 3 shows the detailed
algorithm. 3D YYG can be built locally and efficiently
with only 1-hop neighbor information and linear num-
ber of messages.

4.3 Performance analysis of 3D SYG and 3D YYG
We are now ready for providing some analysis on the
3D structures built by our general frameworks. We will
use two basic properties of the underlying 3D Yao struc-
tures: (1) the out-degree of 3D YG is bounded by k; and
(2) if a link uv Î UBG is not kept in 3D YG, there must
exist a shorter link uw kept in 3D YG and ∠vuw < θ.
Here θ is the largest angle possible in a 3D cone in
FiYG or the half of the top angle of the 3D cone in
FlYG. For simplification, we assume the maximum
transmission range R = 1.
Theorem 1 Both 3D SYG and 3D YYG are strongly

connected if the original 3D UBG is connected and the
angle parameter θ in 3D YG is bounded by π/3.
PROOF. We first prove the connectivity of 3D SYG,

which is equivalent to prove that there is a directed
path from u to v in SYG for any two nodes u and v
with ||uv|| ≤ 1. We prove this claim by an induction
over the distance ||uv|| between nodes u and v. First,
note that the edge between the closest pair of nodes
must be kept in SYG. Assume that the claim is true for
all links less than ||uv||. Now we consider nodes u and
v. If uv is kept in SYG, the claim is true. If uv is not in
SYG, there must a node w inside one of 3D cones at u
or v who causes the deletion of uv. Assume w and v are
in the same cone of u and ||uw|| < ||uv||. Because the
angle ∠wuv is less than θ ≤ π

3 , we have ||vw|| < ||uv||.
By induction there is a path from u to w and a path
from w to v in SYG. Therefore a path from u to v exists
in SYG. This finishes the proof for SYG.
We next prove that SYG is a subgraph of YYG, which

then can imply the connectivity of 3D YYG automati-
cally. Assume that there exists a link uv in SYG but not
in YYG. From the definition of SYG, we know link uv is
selected by both u and v in 3D YG. Then if we apply
reverse Yao structure on incoming neighbor of 3D YG
(as Line 4 in Algorithm 3), uv will also be selected by
node v. Thus, uv must be in YYG. This is a

u v u v
w

u v

(a) uv ∈ SYG (b) uv /∈ SYG (c)←−uv ∈ YYG

Figure 3 Illustrations of 3D Yao Structures with bounded degree. (a) and (b) show 3D symmetric Yao graph; (c) shows 3D Yao and reverse
Yao graph.
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contradiction. Therefore, YYG is a supergraph of SYG
and fully connected. □
The above theorem shows that our proposed algo-

rithms can guarantee the connectivity of the final struc-
ture given that the underlying UBG is connected. In
other words, our algorithms only remove links whose
deletions will not affect the connectivity. Therefore, if
the underlying UBG is already very sparse, our algo-
rithms will not remove many links or even any links.
But if the UBG is denser, more links will be removed by
our proposed algorithms. This has been confirmed by
our simulations (presented in Section 5). Notice that
how to guarantee the connectivity of the UBG (where
every node uses the maximum transmission power) is
beyond the scope of this article. However, there are sev-
eral existing studies [31,33-35,54] on how to set up the
maximum transmission power to guarantee the network
connectivity.
Theorem 2 The node degree of 3D SYG is bounded by

k while both node out-degree and in-degree of 3D YYG is
bounded by k, where k is the degree bound of underlying
3D YG.
PROOF. This theorem is straightforward from the

construction methods of SYG and YYG. Both methods
first apply 3D YG. Since each node has at most k 3D
cones during this construction, the out-degree is
bounded by k. For 3D SYG, a link is kept only if both
endpoints keep it in 3D YG. Thus, the node degree of
SYG is obviously bounded by k. For 3D YYG, the sec-
ond round of 3D YG is applied to incoming links, thus
the node in-degree is also bounded by k. Notice that in
3D YYG, the out-degree and in-degree neighbors of a
node may be different set of nodes. □
Theorem 3 The 3D SYG is not a power spanner of

UBG, while 3D YYG is a power spanner of UBG when b
≥ 3 and θ < π /3.
PROOF. The first half of this theorem can be directly

obtained from a result by Grunewald et al. [16]. They
basically show how to construct a counter example of a
2D network in which SYG is not a power spanner. Since
the 2D network is a special case of 3D networks, the
same counter example works for 3D networks.

The proof of power spanner property of YYG is much
challenging, even in 2D. Jia et al. [58] first proved that
2D YYG is a power spanner when θ ≤ π / 60 (i.e., k ≥
120). It seems that their proof might be extended to 3D
case, however, the node degree bound will be huge

( larger than 4π/3
2π(1−cos(θ/2)) / 3

≥ 5836). Thus it is not

very useful in practice. Schindelhauer et al. [59] then
proved that 2D YYG is a power spanner with power

spanning ratio (8c + 1)2
(2c)β

1−2(2−β) for b > 2 when k >6.

Here c = 1
1−2 sin(π/k) . They proved this by first proving

that 2D YYG is a weak c-spanner. In a weak c-spanner,
between any two nodes there exists a path which
remains within a disk or sphere of radius c-times the
Euclidean distance between them. Their proof of weak
spanner property of YYG can also be extended to 3D
YYG with θ < π / 3. However, to further extend it to
3D power spanner, it requires b ≥ 3. More specifically,
3D YYG is a power spanner with power spanning ratio

(8c + 1)3
(2c)β

1−2(3−β) for b >3 or O(c12) for b = 3 when θ <

π/3. Therefore, we can claim that 3D YYG is a power
spanner for b ≥ 3 and θ <π / 3. When 2 ≤ b <3, the
power spanner property is still open. □
Table 1 summarizes the properties of all proposed and

existing 3D topologies. Notice that the time complexity
of 3D Yao-based structures is O(d) for fixed partitions
and O(d log d) for flexible partitions. Here d is the
number of 1-hop neighbors. In addition, the power
stretch factor of 3D YYG is O(1) only for b ≥ 3, but still
open for 2 ≤ b <3.

5 Simulation results
In order to evaluate the performance of our new 3D
topologies with bounded degree, we conduct simulations
by generating random 3D sensor networks. In our
experiments, we randomly generate a set V of n wireless
nodes and the UBG, then test the connectivity of UBG.
If it is connected, we construct different localized 3D
topologies proposed in this article and some existing
ones, and measure the node degree as well as power
efficiency of these topologies. We repeat the experiment

Table 1 Property summary for existing and proposed 3D topologies

3D structure connectivity out-degree in-degree power
stretch
factor

message time

3D LMST yes O(1) O(1) O(n) O(n) O(d2)

3D RNG yes O(n) O(n) O(n) O(n) O(d)

3D GG yes O(n) O(n) 1 O(n) O(d)

3D YG yes O(1) O(n) O(1) O(n) O(d) or O(d log d)

3D SYG yes O(1) O(1) O(n) O(n) O(d) or O(d log d)

3D YYG yes O(1) O(1) O(1) O(n) O(d) or O(d log d)
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for multiple times and report the average or maximum
values of these metrics in all of the simulations.
We evaluate the following localized 3D topologies:
• Sparse topologies: RNG and GG;
• 3D Yao structures: FiYG32, PYG8, PYG12, FlYG π/4,

and FlYG π/6;
• 3D symmetric Yao structures: FiSYG32, PSYG8,

PSYG12, FlSYGπ/4, and FlSYGπ/6;

• 3D Yao & reverse Yao Structures: FiYYG32, PYYG8,
PYYG12, FlYTGπ/4, and FlYYGπ/6;
Here, *SYG and *YYG are the symmetric Yao structure

and Yao & Reverse Yao structure based on the corre-
sponding underlying 3D Yao structures, respectively.
Figure 4 shows a set of topologies generated for a

UBG with 100 wireless nodes. In the experimental
results presented here, we generate n random wireless
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Figure 4 3D topologies generated from the same UBG.
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nodes in a 10 × 10 × 10 cube; the maximum transmis-
sion range R is set to

√
10 and the power constant b =

2, thus the maximum transmission power Pmax = R2 =
10. It is clear that RNG is the sparsest structure,

however, we know that it is not a power spanner of
UBG. For all Yao structures, the more 3D cones defined
(larger k or smaller θ ) the denser the topology is. For
the structures based on the same 3D Yao construction
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method, symmetric Yao structure is sparser than Yao &
reverse Yao structure.
For the same instance, we plotted the node degrees of

different topologies in Figure 5a. It is clear that UBG

has more nodes with high node degree. While RNG,
GG and all Yao structures can drastically reduce node
degrees. Figure 5b shows the assigned minimal power
levels for all the nodes. Here we assume that each node
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Figure 6 Results when the number of sensor nodes increasing from 50 to 200.
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can shrink its power level to support the longest link in
the generated topology. Clearly, no node needs to trans-
mit at its maximum power level anymore in these sparse
topologies. RNG and GG use the smallest power level,

since they are the sparest graphs. All Yao structures can
also save a lot of energy compared with UBG. Clearly,
more 3D cones defined in Yao structure, less energy it
saves and larger node degree it has.
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Figure 7 Results when the maximum transmission power increasing from 10 to 70.
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We vary the number of nodes n in the network from
50 to 200, where 100 vertex sets are generated for each
case. The average and the maximum are computed over
all these 100 vertex sets. All experimental results are
plotted in Figure 6.
The node degree of wireless networks should not be

too large to avoid interference, collision, and overhead.
It should not be too small either: a low node degree
usually implies that the network has a low fault toler-
ance and tends to increase the overall network power
consumption as longer paths may have to be taken. Fig-
ure 6a shows all localized 3D topologies have lower
average degrees compared with UBG and keep small
degrees when the degree of UBG becomes denser and
denser as the number of nodes in the network increases.
Clearly, Yao structures with larger number of 3D cones
lead to denser structures, while RNG is much sparser
than most of Yao-based structures. Notice that the
structures sparser than GG are Symmetric Yao struc-
tures and Yao & Reverse Yao structures of PYG12, PYG8

and FlYGπ/4 since these structures have smallest 3D
cones. These can also be verified by Figure 4 and 6b
(the maximum node degree). Figure 6c shows that the
maximum node out-degree of these localized 3D-topolo-
gies are small. The out-degrees of all Yao structures are
smaller than the theoretical bounds. Figure 6d also gives
the maximum node in-degree of these topologies which
are a little bit larger than their out-degrees. It is clear
that both symmetric Yao structures and Yao & reverse
Yao structures have smaller in-degrees than 3D Yao
structures. Remember that theoretically they can bound
the node in-degree. The results also showed that RNG
and GG do not have large degrees and 3D Yao struc-
tures do not have large in-degree in this experiment,
and the reasons are that the nodes are distributed ran-
domly in the area. In real life, the network may not be
distributed randomly, so it is possible that RNG and GG
have large degrees and 3D Yao structures have large in-
degrees. Such examples and simulation results can be
found in [19].
Besides connectivity, the most important design metric

of wireless networks is perhaps power efficiency,
because it directly affects both nodes and network life-
time. Figure 6e,f show all proposed structures have
small power stretch factors even when the network is
very dense. Notice that Yao structures based on PYG8

and RNG have a little bit higher stretch factor than GG
and other Yao-based structures, however, their maxi-
mum power stretch factors are still smaller than 5. The
reason again is that the nodes are distributed randomly
in the area and the number of nodes is not too large. As
we expected, GG has a power stretch factor of one and
all power stretch factors of 3D Yao structures are smal-
ler than their theoretical bounds if they have ones.

Among all 3D Yao structures, FlYGπ/6 and FlYYGπ/6

have the smallest stretch factor, since they are the den-
sest 3D Yao structures.
We also conduct simulations on random networks

with fixed 100 nodes and various maximum transmis-
sion power Pmax is from 10 to 70. Simulation results are
plotted in Figure 7. Basic conclusions from this set of
simulations are coherent with previous simulation set.

6 Conclusion
Topology control for 3D wireless sensor networks has
been well studied recently and different 3D geometric
topologies were proposed to achieve the sparseness and
power efficiency. However, most of them cannot bound
the node degree. Even though some of 3D structures
based on Yao graph can bound the node out-degree,
they may still lead to large in-degree at some nodes.
Therefore, in this article, we propose two general frame-
works to build degree-bounded 3D topologies for wire-
less sensor networks. These frameworks can use all
existing Yao-based 3D structures as the underlying
methods, and only use local information with linear
number of messages. We show some of them can also
guarantee the constant power stretch factor in 3D. Our
simulation results confirm the good performance of our
new 3D topologies.

Endnote
aAs shown in Figure 2b, the angle between two neigh-
bors in FlYGθ must be larger than θ, i.e., ∠viuvj < θ.
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