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Abstract

A stream processor is a power-efficient, high-level-language programmable option for embedded applications that
are computation intensive and admit high levels of data parallelism. Many signal-processing algorithms for
communications are well matched to stream-processor architectures, including partially parallel implementations of
layered decoding algorithms such as the turbo-decoding message-passing (TDMP) algorithm. Communication
among clusters of functional units in the stream processor impose a latency cost during both the message-passing
phase and the parity-check phase of the TDMP algorithm with early termination; the inter-cluster communications

units (GPU)

latency is a significant factor in limiting the throughput of the decoder. We consider two modifications of the
schedule for the TDMP algorithm with early termination; each halves the communication required between
functional-unit clusters of the stream processor in each iteration. We show that these can provide a substantial
increase in the information throughput of the decoder without increasing the probability of error.

Keywords: layered decoding, turbo-decoding message passing (TDMP), stream processor, graphical processing

1 Introduction
Quasi-cyclic (QC) low-density parity-check (LDPC) codes
[1] based on circulant permutation submatrices are used
for forward error correction in a wide variety of wireless
communication systems employing battery-powered
devices, including WiMAX (802.16) [2] and Wi-Fi (802.11
n) [3] networks. The embedded processors in the devices
must satisfy stringent limits on their power consumption,
yet they must also exploit the inherent parallelism in the
belief-propagation decoding algorithms [1] used with
LDPC codes in order to achieve a high decoder through-
put. The twin performance objectives typically result in
hardware designs using application specific integrated cir-
cuits or field-programmable gate arrays instead of general-
purpose digital signal processors (DSPs).

An alternative is the use of a specialized DSP that is
optimized for a high level of single-instruction, multiple-
data (SIMD) parallelism. Such a processor can provide the
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high-level-language programmability of a general-purpose
DSP but with a much greater computational throughput
relative to power dissipation for algorithms that admit
high levels of data parallelism. An example of a SIMD-
centric DSP is the graphical processing unit (GPU). GPUs
are powerful, multi-core processors that provide a combi-
nation of task parallelism, thread parallelism, and data par-
allelism which can be used for high-throughput decoding
of LDPC codes [4,5]. GPUs exhibit high power consump-
tion as a result of floating-point processing and support of
highly multithreaded task-level parallelism (including the
consequent structure of the memory hierarchy [6]),
however; thus a GPU is impractical for use in a battery-
powered mobile communication device or an unattended
sensor node.

An emerging alternative for computationally demanding
digital signal processing is a SIMD-optimized DSP
designed for embedded systems, exemplified by the stream
processor (or on-chip stream co-processor) [7]. A stream
processor is a high-data-width SIMD architecture with a
software-managed, cacheless memory hierarchy that
adheres to the stream-processing computing paradigm [7];
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it is designed for applications that exhibit compute inten-
sity, data parallelism, and producer-consumer locality [6].
A stream processor provides a more efficient trade-off
between SIMD parallelism and power consumption than a
GPU by supporting only fixed-point arithmetic for single-
task, single-threaded execution, emphasizing greater local
data-memory density around the functional units, and by
omitting some specialized functions found in the GPU.
The fixed-point processor may provide two or more data-
resolution modes operating on packed-data operands so
that lower-resolution arithmetic operations can be used to
achieve greater computational throughput.

The stream-processor architecture is well-suited to
decoding a QC-LDPC code using the turbo-decoding mes-
sage-passing (TDMP) algorithm. The TDMP algorithm
[8,9] is a rowwise, layered-decoding belief-propagation
algorithm [10] that is readily adapted to differing levels of
partially parallel computation based on the level of paralle-
lism available in the processor. It achieves performance
comparable to the sum-product algorithm (SPA) with
about one-half the average number of iterations. The
TDMP algorithm requires less memory than the SPA (8],
and it permits simpler data management than the SPA in
processor architectures organized for high levels of SIMD
parallelism [11]. Previous research has addressed LDPC
decoding with the SPA [1] using floating-point arithmetic
on a GPU [4,5]. Low-power, fixed-point stream processors
present different decoder design tradeoffs than GPUs,
however, and the TDMP algorithm entails different design
considerations than the SPA.

In this article, we investigate alternatives for early-
termination decoding of QC-LDPC codes on a stream
processor using a form of the TDMP algorithm which
achieves good performance with low-resolution, fixed-
point arithmetic. (Early termination increases the
throughput of the decoder by allowing it to exit the
decoding algorithm prior to the maximum number of
allowed iterations if the decoded word passes all parity
checks.) We consider two algorithms in which the pos-
terior updates and parity checks are integrated for each
subset of the check nodes processed in parallel, in con-
trast with the standard TDMP schedule in which all
parity checks for an iteration are performed after all the
updates. The decoding algorithms reduce by half the
data communications required between the stream pro-
cessor’s functional-unit clusters for each iteration of the
decoder using the standard schedule. Termination rules
which guarantee a valid decoded word are also specified
for each integrated update-and-parity-check decoding
algorithm. The probability of error and the throughput
achieved with each decoding algorithm is evaluated. It is
shown that properly designed integration of the update
and parity-check steps results in significantly higher
decoder throughput than the standard schedule of the
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TDMP algorithm without an increase in the decoder’s
probability of error.

2 The constrained-update offset-min-sum TDMP
algorithm

In this section, we describe the form of the TDMP algo-
rithm considered as the benchmark decoding algorithm
against which other variants are compared in the article.
We consider the algorithm in a system using binary
antipodal modulation with transmission over an additive
white Gaussian noise channel with double-sided power
spectral density Ny/2. Coherent demodulation with per-
fect synchronization is assumed. The sampled channel
outputs are assumed to be normalized in amplitude
prior to decoding so that the normalized channel out-
puts are given by

Ti=:|:1+7’l,'

where {n;} are i.i.d., zero-mean Gaussian random vari-
ables with variance 6 = Ny/(2E,) and E; is the received
energy per channel symbol. (The corresponding energy
per bit of information is denoted by Ej.)

Each iteration of the TDMP algorithm is applied to an
M x N parity-check matrix H of an (N, N - M) LDPC
code, with updates of posterior values for variable nodes
(each corresponding to a code symbol) performed in a
block-sequential manner. Concurrent updates use message
passing based on the parity-check equations correspond-
ing to a blocks of rows of H [9]. Extrinsic messages that
are generated from decoding earlier row blocks are used
as input prior messages for updates of the posterior values
for variables nodes participating in later row blocks. The
row-wise update schedule thus differs from the SPA in
which all check-node updates occur before the updates of
the posterior values are performed for any variable nodes
in an iteration.

We consider application of the offset-min-sum approxi-
mation [12] to the TDMP algorithm, which yields float-
ing-point decoder performance comparable to the original
TDMP algorithm with substantially lower decoding com-
plexity. The use of 8-bit arithmetic can provide up to
twice the computational throughput of 16-bit arithmetic
in SIMD architectures allowing multiple packed-data
arithmetic modes. The use of 8-bit, fixed-point saturating
arithmetic can result in a dramatic increase in the prob-
ability of error in offset-min-sum TDMP decoding com-
pared with floating-point processing or 16-bit fixed-point
processing, however, due to frequent saturation of poster-
ior values in the algorithm if the maximum number of
decoding iterations is large [11]. (The offset-min-sum var-
iant of the SPA is much less sensitive to the fixed-point
resolution, as seen in [13], for example.) The use of a
properly chosen constraint on the magnitude of any
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extrinsic update in the algorithm mitigates the effect of
saturation, however, and results in performance of the
TDMP algorithm with 8-bit processing comparable to the
performance obtained with 16-bit processing [11]. Thus
we consider the constrained-update, offset-min-sum var-
iant of the TDMP algorithm in this investigation. In the
remainder of the article, it is referred to simply as the
“TDMP algorithm”.

In the following description of the TDMP algorithm, the
vector Al = Al ..., )\f:i] represents the extrinsic messages
that correspond to the nonzero entries in row i of H,
where ¢; represents the row weight of row i. The notation
I; denotes a list of the column positions of non-zero
entries in row i in H. The vector ¥ = [¥1, ..., ¥n| represents
the N posterior values, one for each code symbol v;. The
subset of the posterior messages corresponding to the
non-zero column positions of row i are denoted ¥ (I;).

The algorithm is implemented as follows:

1. Initialize A' = 0, for i = 1, ..., M. Also, initialize the
posterior values ¥ = [1i, ..., Tn], where r; is the real-valued
channel output for v;. Each entry in ¥ is applied to a uni-
form quantizer with quantization interval A (and clipping)
for subsequent fixed-point processing using a signed, 8-bit
representation.

2. Read the extrinsic messages A’ and the posterior
values ¥ (Ii) for row i.

3. Subtract A’ from ¥ (Ii) to generate prior messages
p= [pll et pci] =y ) - AL

4. Decode the parity-check equation for row i. Define
a=[ay,...a.] and B = [B1, ... Bu], where @; = sgn[p/]
(the sign of p;) and B; = |p;|. Set

Ci
A= o | - max min -n,0
J H g (1skscﬂk# Pr—m )

k=1,k#

for j = 1, ..., ¢;, where the offset 1 is a non-negative
constant that is an integer multiple of the quantization
interval. (The values of A and 7n are chosen jointly to
minimize the error probability at some operating point
of interest.)

5. Limit the maximum extrinsic updates in Step 4 to

)

where ¢ is a predetermined constant that is used to
limit saturation in the posteriors. It is also an integer
multiple of the quantization interval.

6. Update the posterior values for the code-symbol
positions of I; as y (I;) = p + AL

7. Steps 2-6 represent a decoding subiteration for one
row of H. Repeat the steps for each row of H.

i
Aj

)»]’-' = sgn [)»]’] - min <
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For architecture-aware LDPC codes [8] (such as QC-
LDPC codes based on circulant permutation subma-
trices), large sets of consecutive rows of H correspond
to checks nodes with disjoint sets of variable nodes.
Steps 2-6 can be executed in parallel for any such set of
rows without altering the logic of the algorithm.

Steps 2-7 represent the message-passing phase of one
iteration of the TDMP algorithm. It is followed by the
parity-check phase in which a hard decision is made on
each code symbol v; based upon the sign of ¥; and each
independent parity check is tested. If all the parity checks
are satisfied, decoding is terminated with a valid decoded
code word, and the information bits are recovered by
inverse mapping. If not, but the maximum number of
iterations has been executed, a known decoding failure
occurs. Otherwise, another iteration of the algorithm is
performed. We use this schedule of updates and parity
checks for the TDMP algorithm (with alternating mes-
sage-passing and parity-check phases) as a benchmark in
the article and refer to it as the TDMP algorithm with
the standard schedule.

3 An example of a stream processor

The Storm-1 system-on-a-chip by Stream Processors,
Inc,, is used as the example of a stream processor in the
numerical results. The architecture of the chip (which is
no longer in production) is summarized below. (Details
are given in [14] and a diagram is shown in Figure 1.)
Higher absolute throughput may be obtained with
stream processors fabricated in newer process technolo-
gies using more recent architectural innovations for
low-power, embedded processors with high SIMD paral-
lelism [15-17]. The Storm-1 processor serves as a suita-
ble platform for comparing the relative throughput
obtained on a stream processor with various modifica-
tions of the TDMP decoding algorithm, however.

The Storm-1 system includes two general-purpose
processors and a separate data-processing unit (DPU)
with a SIMD architecture. The DPU contains 80 ALUs
organized as 16 data-parallel 5-ALU functional-unit
clusters referred to as lanes that are controlled by a very
long instruction word in a Harvard architecture. The
Storm-1 processor contains a three-level, non-caching
memory hierarchy. A large off-chip memory is accessible
to the DPU. Lane register files are high-bandwidth, per-
lane, on-chip memory used to stage data for processing
by the ALUs. Operand register files within each lane’s
ALU cluster, addressable only within the cluster, serve
as local registers. Data can also be exchanged directly
between ALU clusters using an inter-lane cross-bar
switch. The accompanying compiler allows an applica-
tion programmer to exploit available data parallelism
and instruction parallelism without the need to explicitly
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Figure 1 Stream processor architecture (adapted from [14]).
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manage the resources of the lanes and the associated
memory.

The DPU is designed for the flow of similarly for-
matted records of a large data set which form a stream.
The stream is processed by one or more kernel func-
tions, each of which is a compute-intensive inner loop
that applies parallel processing to a stream that is resi-
dent in on-chip memory. The computations in the par-
allel-processing units are thus restricted to records in
the stream as atomic data units and kernel functions as
atomic instructions. Control tasks and computations
that do not fit well within this stream-processing para-
digm are assigned by the compiler to a general-purpose
COprocessor.

Analysis by the compiler establishes the stream alloca-
tion and run-time data transfers into on-chip memory
for kernels and streams based on dependencies asso-
ciated with execution. Parallel processing occurs within
kernels only; consequently, single structured instruction
flow is preserved. Kernels are managed by the compiler,

and they can form pipelines which share intermediate
stream results. Data reference by a kernel is limited to
the data records it is processing and other locally
retained constants and variables. The compile-time ana-
lysis imposes a tight control on the use of the memory
hierarchy, hiding the access latency to external memory
for many tasks.

The simplicity of the stream-processing application
programming model is achieved at the cost of restric-
tions in the computation model and strict management
of the memory hierarchy. The resources of the parallel-
processing architecture are utilized most efficiently if
the application has characteristics consistent with these
constraints. Specifically, the application should exhibit
compute intensity, data-parallelism, and data locality [6].
Many signal-processing algorithms exhibit these
characteristics.

The Storm-1 processor provides 8-bit packed-data and
16-bit packed-data modes of saturating fixed-point
arithmetic using 32-bit data registers. The production
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device was fabricated in a 130 nm process. It employs a
nominal DPU clock rate of 800 MHz, resulting in an
aggregate computation rate of 512 8-bit fixed-point
GOPS (billion operations per second) or 256 16-bit
fixed-point GOPS [14]. An evaluation board which oper-
ates at a lower clock rate is used (along with an emula-
tor) to obtain the decoder performance measurements
discussed in subsequent sections, but the results are
given for the clock rate of the production device. The
programming language used for application develop-
ment for the Storm-1 processor is based on ANSI “C”
with enhancements that define the kernel functions and
streams as well as several compiler directives (pragmas).

4 Implementing the offset-min-sum TDMP
algorithm on a stream processor

The TDMP algorithm is well suited to implementation
on the stream processor if it is used with LDPC codes in
which large groups of consecutive row updates can be
performed in parallel without data conflicts. For example,
a QC-LDPC code with circulant permutation subma-
trices permits a degree of parallelism at least as great as
the row dimension of the submatrices. Each block of par-
allel row updates forms one subiteration of a decoder
iteration. In this circumstance, the algorithm is charac-
terized by a high level of available data parallelism and a
high level of data locality. The compute intensity is only
moderate, but data exchanges are limited to the high-
speed inter-lane crossbar switch.

A single compiler directive for the Storm-1 processor
can specify up to 64 concurrent data-parallel computa-
tions (four per lane) by using its 8-bit packed-data mode.
This allows simultaneous processing of four check nodes
per lane which yields a total of 64 concurrent row
updates across the 16 lanes of the processor. Thus the
row-update data parallelism available with the compiler
and the architecture in 8-bit mode is fully exploited if the
dimension of the permutation submatrices is an integer
multiple of 64.

The five ALU’s per lane also provide the compiler with
the opportunity for instruction-level parallelism in the
calculations associated with each row update, including
parallel updates of as many as five posterior values for
each row in Steps 2-6 of the algorithm. Since most of the
QC-LDPC codes of interest have a parity-check matrix
with a weight of five or more for most rows, an assign-
ment of four concurrent row updates to each lane should
result in a high utilization of the processor’s 320 ALUs in
8-bit mode. (The diagnostic tools provided with the
Storm-1 evaluation board do not allow measurement of
the VLIW packing ratio or the ALU utilization to assess
the average level of instruction-level parallelism achieved
by the decoding algorithm, however.)
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As a result of the match between the available paralle-
lism in the LDPC code’s parity-check matrix and the
SIMD parallelism of the processor, straightforward pro-
gramming of the TDMP decoding algorithm results in an
implementation in which extrinsic messages and updates
for a given row of the parity-check matrix are managed
by the same lane of the processor throughout the decod-
ing of a code word. Consequently, information defining
the variable-node participation in a given row is loaded
once into the operand register files of the responsible
lane and retained for the duration of decoding. The
structure of the parity-check matrix permits its represen-
tation in a form amenable to efficient loading and stor-
ing, which we exploit (and which is exploited elsewhere
in implementations on GPUs [5,18,19]).

The posterior value for each variable node must be
communicated to another lane after it is updated in a
subiteration, in general, where the recipient lane is the
one that requires the value in the most immediate future
subiteration. Most of the latency for these data transfers
can be hidden during the message-passing phase (Steps
2-7) of the TDMP algorithm due to the computation
required during the phase. The same posterior transfers
must occur during the parity-check phase, however, and
the lower computational load in that phase exposes most
of the latency as a decoding delay. As shown in the next
section, the exposed inter-lane communication latency
can be a significant factor in limiting the throughput of
the TDMP decoder using the standard schedule consist-
ing of separate message-passing and parity-check phases
in each iteration.

Imperfect regularity in the data structures employed by
the TDMP decoder can result in conditional execution
and branching which markedly reduces the average utili-
zation of the processor’s resources. These problems arise
if the LDPC code is irregular in the row weights of the
parity-check matrix, such as the WiMAX codes we con-
sider in our examples. (The same observation is noted in
[5] regarding decoding irregular LDPC codes on a GPU.)
We address this problem by adding “dummy” variable-
node positions to the representation of the parity-check
matrix and corresponding dummy circulant permutation
submatrices to each row-block containing fewer than the
maximum number of non-zero submatrices. The appar-
ent row-weights of the code are consequently “regular-
ized”, which eliminates the need for conditional
execution of instructions in key parts of the code. Each
dummy variable node is initialized with a prior value set
to the largest possible magnitude of a binary zero in its
signed, 8-bit representation. No two row-blocks contain
non-zero dummy circulant submatrices in the same col-
umn positions, so each dummy variable node participates
in message passing for only one row. The technique
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reduces the computation time per iteration at the cost of
a modest increase in the size of the representation of the
parity-check matrix. Simulations show it has no measur-
able detrimental effect on the error probability or the
convergence behavior of the decoding algorithm.

The TDMP decoder is implemented as a single kernel
function on the Storm-1 processor. Each input stream
corresponds to the vector of quantized channel samples
for one code word, and each output stream corresponds
to one detected code word. The instruction kernel and
the information defining the code’s parity-check matrix
are loaded from the global memory into the DPU only
once, at the start of decoding; both are retained in the
DPU throughout the processing of many consecutive
streams (i.e., while decoding many code words). In our
implementation, the transfer of the channel samples to
the DPU'’s lane register files from the general-purpose
processor occurs while the DPU is otherwise idle. The
resulting latency is a negligible fraction of the decoding
time for a code word, however.

5 Alternatives for early termination of the offset-
min-sum TDMP algorithm on a stream processor
Early termination can be achieved with the TDMP algo-
rithm using the standard schedule, in which each itera-
tion consists of a phase with message passing for all rows
of the parity-check matrix followed by a phase with parity
checks for all rows of the matrix. The algorithm guaran-
tees that either the decoder produces a valid code word
at termination or declares a decoder failure after the
maximum allowed number of iterations. In this section,
we consider three alternatives to the standard schedule
for the offset-min-sum TDMP algorithm with early ter-
mination. Two of them are alternatives of practical inter-
est that provide the same correctness guarantee as the
standard schedule. The other alternative uses a naive
approach that does not guarantee a valid decoded code
word. The decoder with the standard schedule and the
decoder using the naive approach provide two bench-
marks against which we evaluate the performance of the
two practical alternatives to the standard schedule.

The performance of the algorithms is illustrated for four
WiMAX-standard codes [2], each of which is a QC-LDPC
code composed of circulant permutation submatrices of
size 64. The block length of each code is 1536, and the
rates of the codes are 1/2, 2/3, 3/4, and 5/6. (The rate-2/3
code and the rate-3/4 code are constructed using base-
matrix option A in [2].)

The performance of TDMP decoding is evaluated for
each code with the Storm-1 processor using its 8-bit mode
for saturating, fixed-point arithmetic. The parameters of
the decoding algorithm for each code are chosen to pro-
vide nearly-optimal performance with the standard sche-
dule. In each instance, a quantization interval of A = 0.125,
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an offset of 77 = 0.125, and an extrinsic-update magnitude
constraint of € = 2.5 yield the lowest probability of error
across signal-to-noise ratios of interest. A maximum of
twenty decoder iterations is allowed for any code word,
which is sufficient to provide most of the performance
achievable with TDMP decoding for the four codes. Deco-
der execution times are evaluated with the processor
decoding a sequence of consecutive code words as would
be required in a practical communication system.

The decoding time per code word using the standard
schedule is determined by the time required for the three
components of decoding. The first component is the set-
up and completion that includes the time required to initi-
alize the DPU before the first iteration and the time
required to recover decoded data after the last iteration.
The other two components represent the time for the
message-passing phase of the TDMP algorithm per itera-
tion and the time for the parity-check phase per iteration.
The decoding time for a code word using the standard
schedule is thus given by the set-up-and-completion time
plus the number of decoding iterations multiplied by the
sum of the message-passing time and the parity-check
time for an iteration.

The first-row entry in Table 1 shows the processing
times for the three decoding components for a code word
of the rate-1/2 WiMAX code. (The entries in Table 1 are
obtained from the cycle-accurate emulator of the Storm-1
processor and verified by decoder implementation on the
processor.) The set-up and completion time is 2.13 yus.
The message-passing phase for one iteration requires 2.05
us, while the parity-check phase for one iteration requires
1.28 ps. Other than inter-lane communication of informa-
tion during each phase, only a few operations are required
per row in the parity-check phase, whereas many more
operations are required in the message-passing phase. Yet
the parity-check phase requires 62% of the time required
for the message-passing phase, revealing that the proces-
sing time of the separate parity-check phase is dominated
by the latency of exposed inter-lane communications.

The processing time per iteration can be reduced sub-
stantially if some means is employed to eliminate the
inter-lane communications associated with performing
parity checks. Consider an alternative approach to testing
the correctness of code-symbol polarities in which the
parity checks for a given block of rows are incorporated
within the corresponding message-passing subiterations.
At the end of each subiteration of the message-passing
phase, the posteriors updated during the subiteration are
used to determine if the corresponding subset of parity
checks are satisfied. The current posterior values
required for each parity check are already located in the
stream-processor lane in which the parity check is per-
formed since the updates of the same values have just
been completed in the same lane. Thus the need for
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Table 1 Processing time of decoding components for the rate-1/2 WiMAX code

Decoding Set-up & Message passing Only (per  Parity checks only (per  Integrated message passing & parity checks
algorithm completion iteration) iteration) (per iteration)

Standard 213 us 2.05 us 1.28 us -

schedule

Naive IPC 213 us - - 213 us

IPC/confirmation 213 us - 1.28 us 213 us

IPC/stability 213 us - - 2.15 us

check

separate inter-lane communications for parity checks is
eliminated. We refer to this non-standard schedule of
parity checks as the integrated parity check (IPC). The
decoding time for the IPC is shown in the second-row
entry in Table 1. The processing time for the integrated
message-passing-and-parity-check phase of an iteration is
only .08 us greater than the message-passing phase alone
in the standard schedule.

First consider a decoder in which the IPC is used and
decoding is terminated after an iteration in which the inte-
grated parity checks are satisfied during all message-
update subit-erations. (There is no separate parity-check
phase and thus no processing time allocated to such a
phase.) The elimination of the parity-check phase in each
iteration results in a substantial reduction in the proces-
sing time per iteration compared with decoding using the
standard schedule. The algorithm does not guarantee that
a valid code word is decoded at termination, however;
thus, we refer to it as the naive IPC.

The probability of error with TDMP decoding is much
higher if the naive IPC is used than if the standard sche-
dule is used. This is illustrated in Figure 2 in which the
probability of code-word error is shown for both decoders
(as well as two others discussed below) for the rate-1/2
WiMAX code. Decoding with the standard schedule
results in a probability of code-word error of 10 at a sig-
nal-to-noise ratio of 1.97 dB, whereas acceptable perfor-
mance is not achievable at a reasonable signal-to-noise
ratio for decoding with the naive IPC. (Moreover, most
code-word errors yield known decoder failures with the
standard schedule, whereas invalid decoded code words
are not recognized as such by the decoder with the naive
IPC.) Similar results are observed when comparing the
probability of bit error for the two decoders and when
comparing the probability of error for the other three
example codes. Thus decoding with the naive IPC is not
of practical interest.

The validity of the decoded code word is guaranteed if
the naive IPC is supplemented by a standard parity-check
phase which is employed beginning with the first itera-
tion in which all the integrated parity checks are satisfied.
This modified IPC is referred to as the IPC with confir-
mation. Alternatively, the same validity guarantee is
achieved if the naive IPC is modified by adding stability

checks in each subiteration. At the end of the subitera-
tion, the lane performing the updates for a given row of
the parity-check matrix determines if the updates have
changed the sign of the posterior value for any variable
node participating in the corresponding parity check. (I.
e., it determines if the update has changed the tentative
hard decision for any corresponding code symbol.)

The stability checks add .02 us to the processing time
for the message-passing phase of an iteration compared
with the naive IPC and the IPC with confirmation, as
shown in Table 1. If both the integrated parity checks
and the stability checks are satisfied for each message-
update subiteration in an iteration, the hard decisions at
the end of the iteration are guaranteed to correspond to
a valid code word (without the requirement of a separate
parity-check phase). This modified IPC is referred to as
the IPC with stability check. The stability-check techni-
que has been pointed out previously in [10,20], though
not in the context of implementation on a stream proces-
sor. (It is referred to as an “on-the-fly convergence check”
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Figure 2 Probability of code-word error for the rate-1/2
WiMAX code.
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in the latter article.) No evaluation of its impact on the
decoding time is provided in either article.

As seen in Figure 2, both the IPC with confirmation and
the IPC with stability check result in the same probability
of code-word error as the standard schedule for the rate-
1/2 WiMAX code. (For all three algorithms, almost all
code-word errors are known decoder failures.) The prob-
ability of code-word error with each schedule is 107 if the
signal-to-noise ratio is 1.97 dB, and it is 10 if the signal-
to-noise ratio is 2.18 dB. Agreement of the error probabil-
ities for the three schedules is also observed when consid-
ering the probability of bit error and when comparing the
performance for the other three WiMAX codes.

The effect of each parity-check schedule on the deco-
der’s information throughput is shown in Table 2 for the
rate-1/2 WiMAX code. The throughput is measured as
the average number of decoded information bits per sec-
ond. Decoding without early termination is considered for
several values of the number of decoding iterations, 1. (As
noted above, the naive IPC is a decoder with a high error
probability that provides a throughput benchmark for the
practical IPC algorithms.) The standard schedule yields a
decoder throughput of 87.4 Mbps and 11.2 Mbps respec-
tively, for two and 20 iterations per code word. This repre-
sents 27% and 35% less decoder throughput, respectively,
than with the naive IPC. The IPC with confirmation
achieves a throughput of 100.2 Mbps with two decoder
iterations and 16.7 Mbps with 20 decoder iterations. The
throughputs are 17% less and 3% less than with the naive
IPC for two and 20 iterations, respectively. (The IPC with
confirmation is assumed to employ the parity-check phase
only during the Ith iteration in the results shown in
Table 2.) The IPC with stability check yields nearly the
same throughput as the naive IPC for a given number of
decoder iterations. (The difference is no more than 1% in
each case shown in Table 2.)

The results in Table 2 do not reflect the fact that the dif-
ferent schedules result in a different average number of
iterations if early termination is employed. Nor do they
reflect the fact that the IPC with confirmation may initiate
the parity-check phase in an iteration prior to the termi-
nating iteration. The average number of decoding itera-
tions for each of the three practical schedules with early
termination is shown in Figure 3 as a function of the chan-
nel quality (measured by the probability of code-word

Table 2 Information throughput without early
termination for the rate-1/2 WiMAX code

Decoding algorithm 1=2 I=6 =10 1=20
Naive IPC (Mbps) 1204 516 329 17.2
IPC w/stability check (Mbps) 1196 512 326 17.1
IPC w/confirmation (Mbps) 100.2 475 31.1 16.7

Standard schedule (Mbps) 874 347 217 1.2
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error achievable by the decoder). For a channel which
results in a probability of code-word error of 10™* with
each of the three schedules, the IPC with stability check
requires an average of 6.1 iterations, whereas the standard
schedule requires an average of only 5.1 iterations. Over
the range of channel quality of practical interest, in fact,
the average number of iterations required with the same
two schedules differs consistently by about one iteration.

An average of 5.4 iterations are required by the IPC with
confirmation for the channel which results in a probability
of code-word error of 10™*. This schedule requires
approximately 0.2-0.3 iterations more than is required by
the standard schedule on average for any channel quality
of practical interest. It follows from the definition of the
algorithms that the naive IPC must result in a lower aver-
age number of iterations and higher throughput than
either the IPC with confirmation or the IPC with stability
check, but any other comparison of the throughputs of the
schedules requires evaluation by execution on the proces-
sor or simulation in conjunction with Table 1. The average
number of iterations required with each schedule
approaches one asymptotically with improving channel
quality, but the IPC with stability check approaches its
limiting behavior more slowly than either the IPC with
confirmation or the standard schedule.

The decoder’s information throughput using each
schedule with early termination is shown as a function
of the signal-to-noise ratio in Figure 4 for the rate-1/2
WiMAX code. Both the IPC with confirmation and the
IPC with stability check result in an information
throughput of nearly 47 Mbps if the signal-to-noise

20

—e— |PC wth stability check
=== IPC with confirmation
—o = Standard Parity Check

Average # of Iterations

block

Figure 3 Average number of decoding iterations with early
termination for the rate-1/2 WiMAX code.
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Figure 4 Information throughput with early-termination
decoding for the rate-1/2 WiMAX code.

ratio is 2 dB, which is 28% greater than the throughput
achieved with the standard schedule. The throughput is
12% less than the throughput with the naive IPC, how-
ever, which reflects the extra processing cost of guaran-
teeing a valid decoded code word at termination. The
throughput improvement from using either the IPC
with confirmation or the IPC with stability check in
place of the standard schedule is reduced to about 21%
if the signal-to-noise ratio is 2.8 dB, but the advantage
of either over the standard schedule is substantial for
signal-to-noise ratios of practical interest.

The IPC with confirmation provides a slightly greater
throughput than the IPC with stability check with the
rate-1/2 WiMAX code for signal-to-noise ratios between
1 dB and 5 dB. In the limit as the signal-to-noise ratio
approaches infinity (in which each decoding attempt
requires only one iteration), however, the throughput
for both the standard schedule and the IPC with confir-
mation is approximately 140 Mbps, whereas the limiting
throughput for both the naive IPC and the IPC with sta-
bility check is nearly 180 Mbps. (Note that accurate
simulated or emulated results for the average number of
iterations can be obtained using a feasible number of
sample outcomes at a higher signal-to-noise ratio than
is feasible for accurately measuring the probability of
code-word error.)

The information throughput for decoders using the
standard schedule, the IPC with confirmation, and the
IPC with stability check is shown in Table 3 for each of
the four example WiMAX codes and two choices of the
achievable probability of code-word error. Both the IPC
with confirmation and the IPC with stability check
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provide much greater throughput than the standard
schedule for the different rate WiMAX codes. The IPC
with confirmation achieves 8.3%-30.0% greater through-
put than the standard schedule over the four codes and
the two channel conditions, whereas the throughput
resulting with the IPC with stability check is 12.2%-
26.0% greater than that obtained with the standard sche-
dule. The largest percentage throughput improvements
over the standard schedule are achieved with the low-
est-rate code in the lower-quality channel, and the smal-
lest percentage improvements occur with the highest-
rate code and the higher-quality channel. The IPC with
confirmation yields a slightly greater throughput than
the IPC with stability check for the rate-1/2 and rate-3/
4 codes, the two schedules result in the same through-
put for the rate-2/3 code, and the IPC with stability
check produces a slightly greater throughput than the
IPC with confirmation for the rate-5/6 code.

Another characteristic of the decoder implementation
which is of interest is the memory occupied by its
executable code. The DPU in the Storm-1 processor
includes an instruction memory of 2,048 384-bit instruc-
tion words. In our implementation, the rate-1/2 decoder
using the IPC with stability check occupies only 21.2%
of the instruction memory, whereas the rate-1/2 deco-
ders using the standard schedule and the IPC with con-
firmation occupy 24.2% and 25.1% of the instruction
memory, respectively. The decoder using the IPC with
stability check requires 23.0%, 28.4%, and 76.4% of the
instruction memory for the codes of rates 2/3, 3/4, and
5/6, respectively. Over all four codes, 7%-21% more
instruction memory is required if the standard schedule
is used than if the IPC with stability check is used. Simi-
larly, 10%-28% more instruction memory is required if
the IPC with confirmation is used than if the IPC with
stability check is used. The greater instruction-memory
efficiency of the decoder using the IPC with stability
check is the result of the absence of a separate parity-
check phase in the schedule.

6 Conclusions

The data-level parallelism of a low-power, embedded
stream processor can be used to accelerate the decoding
of a QC-LDPC code using variants of the TDMP layered
belief-propagation algorithm. The communications
among functional-unit clusters of the processor is a sig-
nificant factor in the decoding time using the standard
approach of alternating message-passing and parity-
check phases for TDMP decoding. An alternative
approach in which the parity checks are integrated with
the message-passing phase reduces the exposed commu-
nication latency within the processor. Either a separate
parity-check confirmation phase or a check for stability
of hard decisions throughout an iteration of the
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Table 3 Information throughput for the WiMAX code of each rate
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Pblock 10 102
Rate 1/2 2/3 3/4 5/6 1/2 2/3 3/4 5/6
IPC w/
stability check (Mbps) IPC w/ 504 88.9 100.0 146.0 46.0 79.7 91.7 131.6
confirmation (Mbps) Standard 513 889 101.0 1409 46.8 79.7 93.0 1289
schedule (Mbps) 403 744 83.3 1293 36.0 64.4 79.0 114

message-passing phase can be used to ensure a valid
code word at termination of the modified algorithm.
Both provide a substantial increase in the decoder
throughput over the standard TDMP schedule at no
cost in the error probability for decoding with early ter-
mination. The algorithm employing stability checks per-
mits the most efficient use of instruction memory due
to the absence of a separate parity-check phase.
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