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Abstract

Wireless Multiple Input Multiple Output systems provide system designers with additional degrees of freedom.
These can be used to increase throughput, reliability, or even combat spatial interference. The classical Minimum
Mean Squared Error (MMSE) solution is the optimal linear estimator for these systems. Its primary drawback is that
it requires an estimate of the channel response. This is generally not an issue when interference is absent.
However, in environments where interference power is stronger than the desired signal power, this can become
difficult to estimate. The problem is even worse in packet-based systems, which rely on training data to estimate
the channel before estimating the signal. A strong interference will hinder the receiver’s ability to detect the
presence of the packet. This makes it impossible to estimate the channel, a critical component for the classical
MMSE estimator. For this reason, the classical solution is infeasible in real environments with stronger interferences.
We propose a two-stage system that uses practically obtainable channel state information. We will show how this
approach significantly improves packet detection, and how the overall solution approaches the performance of the
classical MMSE estimator.
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1 Introduction
The unlicensed nature of the ISM band has allowed for
rapid development and deployment of various wireless
technologies such as 802.11 and bluetooth. Since devices
are allowed to operate in the same band without pre-
determined frequency or spatial planning, they are
bound to interfere with each other. There have been
several attempts to mitigate this issue via higher layer
protocols. Most of these involve some form of coopera-
tive scheduling [1,2]. Some work has been done to show
that time domain signal processing can be used to miti-
gate the effects of narrowband interference [3-8]. They
have shown in simulation how their techniques can sup-
press interference on the data payload, but have not
taken into account how interference affects other parts
of the receiver. The primary omission has been with
respect to synchronization. This includes tasks such as
packet detection, timing synchronization, and channel

estimation. Without the ability to perform these tasks, it
becomes impossible to build a practical system.
Some work has been done on MIMO-based interfer-

ence mitigation for cellular systems [9,10]. These
approaches focus on reducing interference from neigh-
boring cells or users by coordinating transmissions
either in time, space, or frequency. They do not provide
a method for mitigating interference from a non-coop-
erative external jammer.
The iterative maximum likelihood algorithm described

in [8,11,12] is very effective, but computationally expen-
sive making it difficult to implement for high datarate
systems. They describe a turbo decoder approach to
mitigate interference with an array of processors. Turbo
decoders have a computational complexity of O(l2k )
where l is the block length and k is the constraint length
[13]. This method was proven on real systems, but only
for low datarates. It also requires the use of a turbo
code in order for it to work. The inability to work with
an arbitrary FEC or modulation method makes the
result specific to the system that was demonstrated. The
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minimum interference method offers good performance
in some scenarios but degrades when the interference
becomes weak. They address channel estimation in the
presence of interference, but assume ideal packet detec-
tion in the presence of this interference.
It is our intention to demonstrate a method that can

be practically implemented on a real system. As a design
goal, we will ensure that our technique can operate
without a priori knowledge of the nature or existence of
the interference. We will show how a two-stage MMSE
MIMO estimator can be used to facilitate packet detec-
tion as well as to provide superior bit error rate perfor-
mance. The first stage will be a pre-filter that operates
on reduced Channel State Information (CSI). This pre-
filter will suppress the interference to a level that allows
for reliable packet detection and timing synchronization.
This will be followed by a secondary detection stage
that uses slightly more information to recover the trans-
mitted data. We will demonstrate how this allows the
synchronization tasks to be performed and provides
similar performance to an ideal MMSE MIMO
estimator.
This paper will be organized as follows, Section 2 will

describe the system model and provide derivations for
the filters that we are proposing. Section 3 will discuss
the simulation results. Section 4 will validate some of
the basic assumptions on a real-time hardware testbed.
Finally, Section 5 will conclude this work.

2 System model
For our analysis, we will use a typical MIMO system
with multiple transmit and receive antennas (see Figure
1). A pre-filter is used to improve synchronization per-
formance. We will examine two well-known algorithms
that can be used as a pre-filter in addition to our pro-
posed algorithm. The filtered signal will be used by the
synchronization algorithm to determine whether a

packet is present and to estimate the symbol boundary
(timing synchronization). This signal will then pass
through a secondary filter that will estimate the origin-
ally transmitted signal. The data payload of the packet is
a simple uncoded QAM signal. This was chosen so we
may directly evaluate the performance improvement of
our algorithm and avoid potential non-linear effects
from forward error correction schemes. We used a stan-
dard 802.11a header [14] with well-known techniques
for packet detection and timing synchronization from
[15-17]. It is our intention to show improvements in
performance as opposed to showing absolute perfor-
mance. For that reason, we have chosen to use well-
known training sequences as well as synchronization
algorithms. The performance improvements demon-
strated in this work should be directly applicable to all
packet-based systems that require on packet detection
and timing synchronization.
We begin by defining some notation explicitly. We

will use the superscript (*) to denote the complex conju-
gate transpose (Hermitian) of a vector or a matrix. Low-
ercase boldface symbols (y) will be used to denote
vectors and uppercase boldface (W) will be used to
denote matrices. The hat (x̂) will denote estimates of
signals, while a tilde (x̃) will be used to denote residual
error signals. The trace operator for a matrix will be
denoted as Tr().
First, we will examine Rayleigh flat fading channels,

the simplest class of channels. These channels are mod-
eled as a single impulse chosen from a Rayleigh distribu-
tion. A new channel will be chosen at random for each
packet, but remain constant throughout the duration of
that packet. We will discuss the ideal Minimum Mean
Squared Error (MMSE) solution and show why it is
impractical in high interference scenarios. We will then
review the Sample Matrix Inverse (SMI) [18] as well as
Maximal Signal to Interference plus Noise Ratio

Figure 1 System model.
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(MSINR) [19] algorithms. These are both well suited for
use as a pre-filter since neither require first-order infor-
mation about the channel. Each of these algorithms will
use a standard MMSE detector as the secondary filter to
demodulate the data. We will then discuss our proposed
two-stage solution with its pre-filter and secondary filter.
We will show how the combination of these filters is
equivalent to the ideal linear MMSE solution. Finally,
we will extend each of these methods to cope with Ray-
leigh frequency selective channels.

2.1 Rayleigh flat fading channels
The time domain received signal y(t) (1) is the linear
combination of the received signal of interest, x(t), con-
volved with its channel, Hs , additive white Gaussian
noise (AWGN), n(t), and the interference signal, g(t),
convolved with its channel, Hi . Since the channel is a
single impulse, the convolution of the channel with the
signal is the same as multiplication.
In this work, we will focus on linear estimators of the

form x̂ = Wy for their simplicity and practicality of
implementation. The estimation error is given by
y(t) = Hsx(t) +Hiγ (t) + n(t).

y(t) = Hsx(t) +Hiγ (t) + n(t) (1)

min
W

E[x̃∗x̃] = min
W

E[Tr(x̃x̃∗)] (2)

The linear estimator (W) that satisfies (2) will mini-
mize the mean-squared error (MSE) of the estimator x̂ .
This is equivalent to minimizing the trace of x̂x̂∗ . For
the ease of notation, we define the covariance for the
signal of interest, interference and additive white Gaus-
sian noise as E[xx* ] = Rx , E[gg*] = Rg , and E[nn* ] =
Rn , respectively. The solution to (2) is the classical
MMSE solution given by Equation (3) [20]

WMMSE = RxyR−1
y

= RxH∗
s (HsRxH∗

s +HiRγH∗
i + Rn)−1

(3)

The classical MMSE estimator is very powerful, but
requires first-order channel state information (CSI) for
the signal of interest (Hs ). Traditional packet based sys-
tems transmit training data which the receiver can use
to estimate (Hs ). This is fine when there is no interfer-
ence present allowing packet detection and timing syn-
chronization algorithms to work as expected. It may
even work when the interference is cooperative and can
be canceled using a cooperative scheme, such as Walsh
codes in a CDMA system. If the interference is non-
cooperative and stronger than the desired signal, it may
be impossible to detect the packet. This will cause the
communications system to fail. When the packet cannot
be detected and the symbol boundary cannot be

determined, the channel cannot be estimated. These
practical limitations render the classical approach infea-
sible in many real scenarios.
We propose a pre-filter based solely on second-order

statistics (HsRxH∗
s ,HiRγH∗

i ,Rn) . These statistics can
easily be estimated by averaging outer products of
received signals at different moments in time. Interfer-
ence mitigation algorithms that can operate with only
these covariance estimates offer greater exibility for
communications systems dealing with non-cooperative
interferences.
2.1.1 Covariance estimates
As long as the receiver can make reasonably accurate
decisions about the presence of the desired signal, it can
calculate all of the necessary covariance matrices. Figure
2 shows the times at which two different covariance
measurements can be made. Time t1 indicates a time at
which the packet is not being transmitted, and time t2
indicates the time during which the packet is being
transmitted. Let R1 (4) be the covariance measured dur-
ing time t1 , and R2 (5) be the covariance measured dur-
ing time t2 . The methods described for pre-filtering
below will require only these quantities. We will validate
this assumption with an example from a real-time hard-
ware testbed showing how these determinations can be
made in Section 4.

HiRγH∗
i + Rn = R1 (4)

HsRxH∗
s +HiRγH∗

i + Rn = R2 (5)

Since the signal components are independent, the cov-
ariance of their sum is equal to the sum of their covar-
iances. This allows us to compute the covariance of the
desired signal as the difference between the R2 and R1

measurements (6).

HsRxH∗
s = R2 − R1 (6)

We will describe a few alternatives for the pre-filter in
the following sections. These will be important for boot-
strapping the system using the available measurements
(R2 and R1 ).
2.1.2 Sample matrix inverse
An example of an algorithm that relies only on second-
order statistics is the Sample Matrix Inverse (SMI) [18],
which has been shown to be very effective for

Figure 2 Timing for covariance estimation.
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interference mitigation [21]. This algorithm uses the
inverse of the covariance of the interference + AWGN
as its pre-filtering matrix (7).

WSMI = (HiRγH∗
i + Rn)−1 (7)

The advantage of this algorithm is that the pre-filter
only needs knowledge of the covariance of the undesired
signal components. This can be particularly useful dur-
ing the initialization of the communications system. If a
strong interference is present, it may not be possible to
determine when the signal of interest is being trans-
mitted. This will make it impossible to take an accurate
R2 measurement. Instead, the receiver can take several
R1 measurements and use the SMI as the pre-filter to
improve synchronization performance.
Since the receiver will not know when the desired sig-

nal is present, it may still take improper measurements.
It is therefore necessary to take consecutive measure-
ments and apply the SMI until the desired signal can be
detected by the synchronization algorithm. This equates
to a series of Bernoulli trials. We know the likelihood of
x consecutive failures decays exponentially with x. The
number of trials required is simply a function of the
time the desired signal occupies the band. This can
easily be adjusted by the system designer to meet the
requirements of the communication system. In Section
3, we will show how effective this algorithm is at
improving synchronization performance in the presence
of very strong interferences. SMI can be used to boot-
strap the system. Once a good R1 measurement has
been taken, the system will be able to determine
whether the desired signal is present or not. It may not
be able to estimate the symbol boundary accurately, but
this information will make it possible to take an R2

measurement and improve the pre-filter.
2.1.3 Maximal signal to interference and noise ratio
The Maximal Signal to Interference and Noise Ratio
(MSINR) criterion seeks to maximize the signal power
with respect to the interference + noise power. This cri-
terion is formulated by optimizing the power of each of
the components in the received signal (8). The linear
estimator is still computed as x̂ = Wy , resulting in its
second-order statistics being described by (9).

E[yy∗] = HsRxH∗
s +HiRγH∗

i + Rn (8)

E[x̂x̂∗] = WHsRxH∗
sW

∗ +W(HiRγH∗
i + Rn)W∗ (9)

The MSINR criterion is given by (10). The pre-filter
that satisfies this criterion is the solution to the general-
ized eigen-value problem and is given by (11) [19].

max
W

=
Tr(WHsRxH∗

sW
∗)

Tr(W(HiRγH∗
i + Rn)W∗)

(10)

WMSINR = HsRxH∗
s (HiRγH∗

i + Rn)−1 (11)

Instead of directly estimating the transmitted signal,
this criterion will try to maximize its power relative to
the noise and interference. Once again the demodula-
tion can be done with a MMSE based decoder after
packet detection, timing synchronization and channel
estimation have been completed. This algorithm
requires the covariance of the desired signal as well as
the information used in the SMI. Once the pre-filter is
performing well enough for synchronization to detect
packets, the R2 measurement can be taken, and the SMI
pre-filter can be replaced with the MSINR pre-filter.
2.1.4 Two-stage MMSE
Consider (3) for the MMSE Linear estimator. The only
component that is not a second-order statistic is Rx Hs

*. If we left multiply the MMSE estimator with the
channel matrix Hs , we create an equation that is com-
prised entirely of second-order statistics (12).

WS1 = HsWMMSE

= HsRxH∗
s (HsRxH∗

s +HiRγH∗
i + Rn)−1 (12)

This operation may introduce spatial interference by
mixing the signal components from independent spatial
streams. However, if there is only one spatial stream,
the result will be a spreading of the desired signal. This
is enough to allow many standard detection algorithms
to detect and synchronize with an incoming packet.
This modified version of the MMSE estimator leads us
to our two-stage approach to interference mitigation.
In the first stage, the pre-filter will be used to suppress

the interference as much as possible. This suppression
must be enough to facilitate packet detection, timing
synchronization and channel estimation. If these tasks
can be performed reliably, the estimated channel can be
used in a secondary filter. We use this to define a two-
stage approach that achieves identical performance as
the classical linear MMSE estimator.

WS2 = (H∗
sHs)−1H∗

s (13)

In (12), we defined the pre-filter (WS1 ) using only
second-order statistics. The second stage is a simple
zero-forcing MIMO decoder (13). We are able to use
the first-order statistic Hs at this point because we will
have a channel estimate based on the training data from
the packet header. We will show how this estimate can
be obtained in (15)-(19).
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x̂ = WS2WS1

= (H∗
sHs)−1H∗

sHsWMMSEy

= WMMSEy

(14)

The zero-forcing decoder is used because Hs may not
be a square matrix. If the matrix is not square, it will
not be directly invertible. This will happen anytime
there are fewer transmit streams than receive antennas.
Equation (14) shows how the application of these two
filters in series results in the original MMSE linear esti-
mator. Equations (13) and (14) together show how the
MMSE estimator can be broken down into a two-stage
process when ideal CSI is available.
In a real system, however, the channel matrix will

need to be estimated from the output of the pre-filter
(WS1 ). The measured channel will be modified from
the actual channel by the pre-filter. The output of the
pre-filter is given by (15).

xS1 = WS1y = HsWMMSEy (15)

2.2 Channel estimation
MIMO training matrices (16) can be used to estimate
the combined effect of the channel and pre-filter from
x̂S1 . The columns of the matrix correspond to spatial
streams and the rows correspond to symbols. A subset
of this matrix can be used for systems that are smaller
than 4 × 4. This matrix pattern can also be extended to
accommodate systems with more antennas.

P =

⎡
⎢⎢⎣

a −a a a
a a −a a
a a a −a

−a a a a

⎤
⎥⎥⎦ (16)

In a typical MIMO system, the channel measurement
is computed from the received training symbols. Con-
sider P = [p1 p2 p3 p4 ], where each pi corresponds to a
transmission vector. Each element in pi refers to the
symbol transmitted from that antenna for this vector.
The receiver can measure the received values for each
vector and construct a matrix with the estimates. This
measurement is Z = Hs P. In order to estimate the
channel, Z is right multipliedby either the Hermitian or
transpose of the training matrix. When this training
matrix is real-valued (a = 1), it does not matter which is
used. We will use the Hermitian since it will work for
both real and complex-valued training matrices. The
result of the right multiplication is given by (17).

PP∗ =

⎡
⎢⎢⎣
aa∗ 0 0 0
0 aa∗ 0 0
0 0 aa∗ 0
0 0 0 aa∗

⎤
⎥⎥⎦ (17)

The ZS1 that will be estimated from xS1 is shown in
(18). In order to estimate the original channel from this
modified version, we use the inverse of the pre-filter
(19).

ZS1 = WS1HsP (18)

Ĥs = (1/α)(WS1)−1ZS1P∗ (19)

2.3 Rayleigh frequency selective channels
Equation (3) implicitly assumes that the channel is non-
dispersive. This means that each entry in the channel
matrix is a constant complex value. In order to model
dispersive channels, we must extend this model to han-
dle multipath.

Hs = Hs0δ(t) +Hs1δ(t − 1) +Hs2δ(t − 2) + · · · (20)

Hi = Hi0δ(t) +Hi1δ(t − 1) +Hi2δ(t − 2) + · · · (21)

This can be done by modeling the channel as a series
of complex impulses where the channel matrix for each
impulse is composed of constant complex values (20)-
(21). The length of the channel is determined by the
delay spread.

yM =

⎡
⎢⎢⎢⎣

y(t)
y(t − 1)

...
y(t − M − 1)

⎤
⎥⎥⎥⎦ , xM =

⎡
⎢⎢⎢⎣

x(t)
x(t − 1)

...
x(t − M − 1)

⎤
⎥⎥⎥⎦ (22)

γM =

⎡
⎢⎢⎢⎣

γ (t)
γ (t − 1)

...
γ (t − M − 1)

⎤
⎥⎥⎥⎦ , nM =

⎡
⎢⎢⎢⎣

n(t)
n(t − 1)

...
n(t − M − 1)

⎤
⎥⎥⎥⎦(23)

HsMM =

⎡
⎣
Hs0 Hs1 Hs2
0 Hs0 Hs1
0 0 Hs0

⎤
⎦ ,

HiMM =

⎡
⎣
Hi0 Hi1 Hi2
0 Hi0 Hi1
0 0 Hi0

⎤
⎦

(24)

In this scenario, the MMSE estimator needs to be
modified to properly estimate the transmitted signal.
Equations (22) and (23) define new compound signals
that are composed of M delayed versions of the original
signals, where M is the delay spread of the channel.
Correspondingly we define new compound channel
matrices (24) composed of the channel matrices for
each impulse in the original dispersive channel. For this
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example, we will use M = 3. The entities defined in
(22)-(24) are related by (25).

yM(t) = HsMMx(t) +HiMMγM(t) + n(t) (25)

With these quantities defined, we can re-examine the
solution to the MMSE criterion. Since we are now try-
ing to estimate x(t) from yM (t), the W that satisfies the
MMSE criterion will be given by (26). We must also
define the covariance (27) of the signal components in
(22) and (23). Assuming that the signals will be indepen-
dent and identically distributed, these covariance
matrices will block diagonal as shown in (28).

WMMSE = RxyMRyM
−1 (26)

E
[
xM(t)x∗

M(t)
]
= RxM ,E

[
γM(t)γ ∗

M(t)
]
= RγM ,

E
[
nM(t)n∗

M(t)
]
= RnM

(27)

RxM = diag (Rx,Rx, . . .) ,RγM = diag
(
Rγ ,Rγ , . . .

)
,

RnM = diag (Rn,Rn, . . .)
(28)

The cross-correlation of the desired x(t) with the com-
pound yM (t) is given by (29). The covariance of yM (t)
is straightforward and shown in (30). The resulting esti-
mator is given by (31).

RxyM =
[
Rx 0 0

]
HsMM

∗ (29)

RyM =

(HsMMRxMHsMM
∗+

HiMMRγMHiMM
∗ + RnM)

−1

(30)

x̂MMSE(t) =[
Rx 0 0

]
HsMM

∗

(HsMMRxMHsMM
∗+

HiMMRγMHiMM
∗ + RnM)

−1yM(t)

(31)

Once again, the MMSE estimator is very powerful, but
requires first-order CSI (HsMM) for the signal of interest.
As shown in the previous sections (4) and (5), we can
estimate the second-order statistics by averaging the
outer products of the compound received signals (22)-
(23). This brings us back to the notion of building pre-
filters using only second-order statistics. We will now
consider extensions of the previous algorithms for the
more complex frequency selective channel.
The SMI and MSINR approaches are easily extended

to work in this environment. The pre-filters for these
approaches are given by (32) and (33) respectively.

WSMI = (H∗
iMM

RγMHiMM + RnM)
−1 (32)

WMSINR = H∗
sMM

RxMHsMM(H
∗
iMM

RγMHiMM + RnM)
−1 (33)

Once again we examine the MMSE linear estimator
(31). Similar to the flat fading scenario, the only compo-
nent that is not a second-order statistic is RxyM . We can
define an estimator (34) that is composed only of sec-
ond-order statistics.

WS1 = H∗
sMM

RxMHsMM

(H∗
sMM

RxMHsMM+

H∗
iMM

RγMHiMM + RnM)
−1

(34)

WS2 =
[
Rx 0 0

]
H∗

sMM
(H∗

sMM
RxMHsMM)

−1 (35)

WS1 will function as a pre-filter similar to pre-filter
from the flat fading scenario (12). It will facilitate packet
detection and synchronization. The second stage is
defined in (35). Equation (36) shows how the application
of these two filters results in the original MMSE linear
estimator. This derivation is similar to the flat fading
scenario.

x̂(t) = WS1WS2yM(t)

=
[
Rx 0 0

]
H∗

sMM

(H∗
sMM

RxMHsMM)
−1H∗

sMM
RxMMHsMM

(H∗
sMM

RxMHsMM+
H∗

iMM
RγMHiMM + RnM)

−1

= WMMSEyM(t)

(36)

We have shown how this MMSE estimator can be
broken down into a two-stage process when ideal chan-
nel state information is available. In a real system, the
channel matrix will need to be estimated from the out-
put of the pre-filter (WS1 ). The measured channel will
be a modified version of the actual channel the signal
went through.

xS1M = WS1y = HsMMWMMSEy (37)

The output of the pre-filter is given in (37). The
ZS1MM that will be measured from xS1M is shown in
(38). The dispersive channel can be estimated using M-
sequences [22,23]. These sequences have strong auto-
correlations at 0-offset and very low correlations for all
other offsets. In order to estimate the original channel
from this modified version, we use the inverse of the
pre-filter (39).

ZS1MM = WS1HsMMP (38)

ĤsMM = (1/α)(WS1)−1ZS1MMP
∗ (39)
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3 Simulation results
The algorithms described in Section 2 were simulated in
MATLAB using a MIMO systems with 4 receive anten-
nas. This included the ideal MMSE solution, SMI,
MSINR and the proposed two-stage MMSE solution.
The non-cooperative interference source was a single
antenna transmission convolved with its own channel.
The interference signal was a white Gaussian noise sig-
nal, which is essentially a wideband signal. The desired
signal was modeled to have 2 or 3 independent spatial
streams. The transmission started with a known
sequence to be used for packet detection and timing
synchronization. We used the standard 802.11a header
[14] with well-known techniques for packet detection,
and timing synchronization from [15-17]. This was fol-
lowed by training data to be used for channel estimation
by the receiver. The body of the packet was an uncoded
bit stream modulated onto a QPSK constellation. Inde-
pendent Rayleigh fading channels were generated ran-
domly for each trial for both the desired and undesired
signals. These channels remained constant throughout
the duration of each trial.

3.1 Rayleigh flat fading channels
Rayleigh flat fading channels are the easiest channels to
compensate. They consist of a single impulse and allow
us to model the channel as a simple gain and phase
adjustment of the transmitted signal. We begin our ana-
lysis by considering the original goal of our approach,
which is to ensure packet synchronization can be per-
formed. It is necessary to examine this performance
before we can investigate the bit error rate (BER). With-
out packet detection, the communications system will
fail. For our system to declare successful synchroniza-
tion the receiver must correctly detect the presence of
the packet, as well as accurately determine the symbol
boundary. The symbol boundary is used to determine
when the packet started and when each symbol begins
and ends. Without this information, the receiver is
unable to estimate the channel since it does not know
when the training data begins and ends. The estimated
channel is used by the receiver to estimate the trans-
mitted signal in the secondary filter.
Table 1 provides details on the legend entries for the

synchronization failure curves as well as the BER curves
that will follow. For the ideal MMSE solution, we used

(3) in the pre-filter. There is no need for a secondary fil-
ter, since the pre-filter has already provided the best
possible estimate of the transmitted signal. When testing
SMI and MSINR, an ideal MMSE estimator was used as
the secondary filter. Since the signal had already been
perturbed by a pre-filter, the MMSE solution used the
perturbed version of the channel WS1 Hs.
Figure 3 shows the synchronization performance at

-20 dB SIR for a two-antenna transmission scheme. As
expected, the synchronization algorithm completely fails
in the absence of pre-filtering. All of the methods
described for pre-filtering offer significant improve-
ments. It is clear that without a pre-filter, the system
cannot survive in the presence of strong external
interferences.
The pre-filter designed to work with our two-stage

approach provides almost the same performance as the
SMI pre-filter. They both outperform the MSINR, and
their relative performance gap becomes much smaller as
the SNR becomes larger. While MSINR does not pro-
vide the same level of synchronization performance as
SMI, we will see that it does in fact provide far superior
BER performance. This is because the SMI algorithm
only has knowledge of the interference. It has no infor-
mation about the channel of the desired signal. This
creates very deep nulls for the interference, but can
cause degradation of the desired signal. As the channels
and transmission schemes become more complex the
performance of SMI will degrade. We will see this occur
in the BER performance for the flat fading channel as
well as the frequency selective channel. Figure 4 shows
the synchronization performance of these algorithms as
a function of SIR at 10 dB SNR. We can see that SMI is
the most effective when the interference is strong. As
the interference becomes weaker and less of an issue,
the harshness of the null becomes detrimental to the
performance of the system. This can be seen by the
crossover of the MMSE2 and SMI curves at 2 dB SIR.
The bit error rate for these algorithms is given in Fig-

ure 5. As described earlier, the second-stage filter for
estimating the transmitted bits is calculated from the
channel that was estimated during synchronization. As a
bound, we show the BER performance of the system
with an ideal version of the classical MMSE solution.
While this solution is impractical, due to the lack of a
channel estimate for the pre-filter, it represents the best

Table 1 Legend entry descriptions

No pre-filt Pre-filtering is omitted

IM MMSE The ideal MMSE solution (3) is used in the pre-filter, no secondary filter is required

MMSE2 Equation (12) is used in the pre-filter and Equation (13) is used for MIMO detection with ideal CSI

MSINR Equation (11) is used in the pre-filter

SMI Equation (7) is used in the pre-filter
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Figure 3 Synchronization failure rate (-20 dB SIR).

Figure 4 Synchronization failure versus SIR.
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performance we can expect of a linear estimation sys-
tem. The performance of our two-stage algorithm
approaches that of the infeasible MMSE solution. The
loss in performance is less than 0.5 dB. We also note
that the two-stage solution consistently outperforms
SMI and MSINR in these two scenarios. The perfor-
mance gap between the two-stage MMSE solution and
MSINR grows as the complexity of the problem grows.
The improvement is roughly 2 dB when 3 spatial
streams are transmitted. We will see how this gap
becomes even larger with frequency selective channels.
Figure 6 shows the performance of the system as a

function of SIR for both the 2 and 3 TX antenna cases.
We can see the gains for the two-stage approach are
consistent across the entire SIR range. We also notice
that the SMI and MSINR approaches do not fare well
when the interference gets weaker. In fact, the perfor-
mance is worse with these pre-filters than it is with no
pre-filter at all. This is an issue that we had first noted
with synchronization performance for SMI in Figure 4.

This crossover represents an undesirable loss in perfor-
mance. The IM MMSE and two-stage solution both
track the performance improvement of the unmodified
system once they approach that curve. This represents a
graceful transition as the interference becomes weaker
and eventually ceases to impact the performance of the
system. This is evident for both the 2 and 3 TX antenna
cases.

3.2 Rayleigh frequency selective channels
Next we shift our attention to frequency selective chan-
nels. Again, we begin by examining the synchronization
performance to ensure that the pre-filtering operation is
providing a significant improvement. Figure 7 shows the
synchronization performance at -5 dB SIR for a two-
antenna transmission scheme. The legend entries are
still defined by Table 1 from the previous section. The
equations are replaced with those from the frequency
selective channel work in Section 2.3. For the ideal
MMSE solution, Equation (3) is replaced by (26). The
SMI and MSINR pre-filters (7) and (11) are replaced by
(32) and (33) respectively. Finally, the two-stage MMSE
filters (12) and (13) are replaced by (34) and (35) respec-
tively. The criteria for successful synchronization are
also the same as they were in the previous section.
Once again we see how drastic the improvement in

synchronization performance becomes with use of our
pre-filter (Figure 7). Without the pre-filtering operation,
synchronization fails completely. The two-stage MMSE
pre-filtering operation improves that success rate to
over 99% when the SNR is greater than 10 dB. This is a
very significant improvement that contributes to the sta-
bility and throughput of the communications system.
The alternatives available for the pre-filter are inferior
to the proposed two-stage solution. The SMI solution
also fails to outperform the two-stage solution in this
complex channel.
The bit error rate for these algorithms with SIR = -5

db is shown in Figure 8. We can see the improvement
in performance from the two-stage approach. The per-
formance of the system without a pre-filter is not good
enough to sustain reliable communications. The two-
stage approach provides performance within 0.5 dB of
the bound given by the ideal MMSE solution. It also sig-
nificantly outperforms MSINR which is the nearest
competitor. There is a 2 dB improvement when trans-
mitting with two-spatial streams and even greater
improvement for 3 spatial streams.
Figure 9 shows the performance as a function of the

SIR. Just as we saw in Figure 6, the two-stage solution
consistently outperforms the SMI and MSINR solutions.
The IM MMSE and two-stage solution also improve as
the interference gets weaker and ceases to dominate the
performance of the system.

(a) 2 Spatial Streams

(b) 3 Spatial Streams

Figure 5 BER at - 20 dB SIR.
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Figure 6 BER at 10 dB SNR.

Figure 7 Synchronization failure rate (-5 dB SIR).

Shah and Daneshrad EURASIP Journal on Wireless Communications
and Networking 2011, 2011:205
http://jwcn.eurasipjournals.com/content/2011/1/205

Page 10 of 14



4 Hardware implementation
The SMI multi-antenna interference mitigation scheme
was implemented on a hardware testbed for verification.
The purpose of this was to prove that this type of algo-
rithm can work on real hardware in a real environment.
Most importantly, it showed that the method described
for obtaining the R1 and R2 measurements in Section 2
could be realized in a real system.
We chose the SMI algorithm since it required the few-

est calculations to implement. The limited hardware
resources available on the FPGA prevented us from
implementing one of the more complex pre-filters. In
addition to the limited resources, we were unable to
change the existing MMSE MIMO OFDM estimator.
This meant we could not implement the stage-2 filter
required for our two-stage solution. The pre-filter was
added to the existing MIMO OFDM cognitive radio
testbed [24] (See Figure 10). The transmitter and recei-
ver on this testbed are completely contained in an
FPGA. The interference mitigation module was added

before the receiver so it could pre-filter the received sig-
nal and improve the SINR before the existing receiver
attempted to decode the packet (See Figure 11). The
received OFDM signal was demodulated by a standard
MMSE MIMO estimator in the pre-existing receiver.
This was a key advantage of the SMI and MSINR algo-
rithms discussed in the previous sections.

4.1 System overview
The estimation of the covariance is a straightforward
averaging of the outer product of the incoming signal.
The only concern when estimating the covariance is
that the signal being received should contain only the
interference and noise. This is required in order to com-
pute an accurate R1 measurement. A controller state
machine was designed to enable estimation of the covar-
iance during time periods which are unlikely to contain
the signal of interest. The details of this state machine
are omitted.
An onboard microprocessor was used to calculate the

spatial filtering matrix W based on the input covariance
matrix R. This was computed on a microprocessor with
double precision floating point arithmetic using well-
known matrix inversion algorithms (Cholesky). A simple
protocol was developed for passing matrices between
the host and FPGA to prevent data corruption. The
interval between passing R to the host and receiving a
W back was 1 ms.
Figure 12 shows a logic analyzer trace of the execution

of this state machine and its impact on the performance
of a packet based communications system. The signal
power at the input and output of the filter is shown in
the first two traces. These show when the interference is
present at the input, as well as when it is being success-
fully mitigated at the output. Near the bottom of the fig-
ure, we can see when good packets are being received.
At the beginning of this trace, there was no interference
present and every packet was successfully received.
About a quarter of the way into the trace the filter

input changes. This is when the interference signal
became active. Unsurprisingly, it prevented the system
from receiving packets. The time required for the sys-
tem to recover and receive packets is a function of the
system design parameters. In this case, the most signifi-
cant source of delay was the matrix inversion required
to compute the pre-filter. This computation took a con-
siderable amount of time and dictated the rate at which
we could update our pre-filter.
The absolute bottom row on the trace indicates when

the controller is computing an R1 covariance estimate.
When the system is behaving well and decoding every
packet, the estimates are taken immediately after the
packet ends. The transmitter guaranteed this time
would be silent, which makes it the optimal time to

(a) 2 Spatial Streams

(b) 3 Spatial Streams

Figure 8 BER at -5 dB SIR in frequency selective channels.
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estimate the interference. Note how these estimates
become less frequent when the interference turns on.
The controller waits for a stimulus to begin estima-

tion. If it does not receive the stimulus for a pre-
defined time, it assumes interference is preventing the
receiver from decoding packets. It then switches to a
timeout mode where it measures the covariance on a
fixed interval. The gap between the last good estimate
and the next attempt is a function of this timeout per-
iod. In this example, the controller made a couple of
failed attempts at covariance estimation while it was in
timeout.

Once it makes a good estimate, it is able calculate the
pre-filter. The yellow W indicates the time at which the
pre-filter is updated with good coefficients. The
improvement in performance is immediately visible at
the output of the filter. In the second to last trace, the
good packet indicators show successful reception of
packets, coinciding with the updated pre-filter.
In this example, the system recovered from the onset

of interference in 3 ms. This time can be shortened by
reducing the timeout period for the controller. Another
way to reduce the recovery time is to use a faster pro-
cessor to compute the pre-filter from the covariance
estimate.
This example validates the assumption that the recei-

ver can reasonably make an R1 measurement even in
the presence of strong interference.

5 Conclusion
We have demonstrated a practically realizable two-stage
MMSE based approach to interference mitigation and
MIMO detection. The advantage of our algorithm is
that it enables synchronization tasks such as packet
detection, timing synchronization, and channel estima-
tion to be performed in the absence of complete chan-
nel state information. The pre-filtering operation uses
information that can be easily estimated in the absence

Figure 9 BER at 10 dB SNR.

Figure 10 Real-time MIMO OFDM testbed.

Shah and Daneshrad EURASIP Journal on Wireless Communications
and Networking 2011, 2011:205
http://jwcn.eurasipjournals.com/content/2011/1/205

Page 12 of 14



of training sequences. The second-stage filter uses infor-
mation from the pre-filter as well as channel estimates
computed during synchronization.
We have shown how the synchronization performance

of this algorithm is superior to the classical approach
with no pre-filter. We have also shown that the BER
performance is within a 0.5 dB of the ideal (yet infeasi-
ble) classical MMSE solution. We have demonstrated
significant improvement over the existing algorithms for
complex transmission schemes and channels. We have
also demonstrated how the necessary statistics can be
estimated and how the system can be built to achieve

good performance. This has not only been done for Ray-
leigh flat fading channels but for frequency selective
channels as well.
Our approach is significant because it lends itself to

practically realizable systems. The use of second-order
statistics in the pre-filter is something that can easily be
implemented on real-time hardware. We have also
shown how a system can be designed to make the
necessary measurements in the presence of a strong
interference. This was demonstrated on a real-time
hardware testbed with a non-cooperative interference
source.

Figure 11 Interference mitigation subsystem insertion for RX chain.

Figure 12 Interference mitigation hardware execution.
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