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Abstract

Multicell joint processing has originated from information-theoretic principles as a means of reaching the
fundamental capacity limits of cellular networks. However, global multicell joint decoding is highly complex and in
practice clusters of cooperating Base Stations constitute a more realistic scenario. In this direction, the mitigation of
intercluster interference rises as a critical factor towards achieving the promised throughput gains. In this paper,
two intercluster interference mitigation techniques are investigated and compared, namely interference alignment
and resource division multiple access. The cases of global multicell joint processing and cochannel interference
allowance are also considered as an upper and lower bound to the interference alignment scheme, respectively.
Each case is modelled and analyzed using the per-cell ergodic sum-rate throughput as a figure of merit. In this
process, the asymptotic eigenvalue distribution of the channel covariance matrices is analytically derived based on
free-probabilistic arguments in order to quantify the sum-rate throughput. Using numerical results, it is established
that resource division multiple access is preferable for dense cellular systems, while cochannel interference
allowance is advantageous for highly sparse cellular systems. Interference alignment provides superior performance
for average to sparse cellular systems on the expense of higher complexity.

1 Introduction
Currently cellular networks carry the main bulk of wire-
less traffic and as a result they risk being saturated con-
sidering the ever increasing traffic imposed by internet
data services. In this context, the academic community
in collaboration with industry and standardization
bodies have been investigating innovative network archi-
tectures and communication techniques which can over-
come the interference-limited nature of cellular systems.
The paradigm of multicell joint processing has risen as
a promising way of overcoming those limitations and
has since gained increasing momentum which lead from
theoretical research to testbed implementations [1].
Furthermore, the recent inclusion of CoMP (Coordi-
nated Multiple Point) techniques in LTE-advanced [2]
serves as a reinforcement of the latter statement.
Multicell joint processing is based on the idea that sig-

nal processing does not take place at individual base sta-
tions (BSs), but at a central processor which can jointly

serve the user terminals (UTs) of multiple cells through
the spatially distributed BSs. It should be noted that the
main concept of multicell joint processing is closely
connected to the rationale behind Network MIMO and
Distributed Antenna Systems (DAS) and those three
terms are often utilized interchangeably in the literature.
According to the global multicell joint processing, all
the BSs of a large cellular system are assumed to be
interconnected to a single central processor through an
extended backhaul. However, the computational require-
ments of such a processor and the large investment
needed for backhaul links have hindered its realization.
On the other hand, clustered multicell joint processing
utilizes multiple signal processors in order to form BS
clusters of limited size, but this localized cooperation
introduces intercluster interference into the system,
which has to be mitigated in order to harvest the full
potential of multicell joint processing. In this direction,
reuse of time or frequency channel resources (resource
division multiple access) could provide the necessary
spatial separation amongst clusters, an approach which
basically mimics the principles of the traditional cellular
paradigm only on a cluster scale. Another alternative
would be to simply tolerate intercluster signals as
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cochannel interference, but obviously this scheme
becomes problematic in highly dense systems. Taking all
this into account, the current paper considers the uplink
of a clustered multicell joint decoding (MJD) system
and proposes a new communication strategy for mitigat-
ing intercluster interference using interference align-
ment (IA). More specifically, the main contributions
herein are:

1. the channel modelling of a clustered MJD system
with IA as intercluster interference mitigation
technique,
2. the analytical derivation of the ergodic throughput
based on free probabilistic arguments in the R-trans-
form domain,
3. the analytical comparison with the upper bound
of global MJD, the Resource Division Multiple
Access (RDMA) scheme and the lower bound of
clustered MJD with Cochannel Interference allow-
ance (CI),
4. the comparison of the derived closed-form expres-
sions with Monte Carlo simulations and the perfor-
mance evaluation using numerical results.

The remainder of this paper is structured as follows:
Section 2 reviews in detail prior work in the areas of
clustered MJD and IA. Section 3 describes the channel
modelling, free probability derivations and throughput
results for the following cases: (a) global MJD, (b) IA,
(c) RDMA and (d) CI. Section 4 displays the accuracy of
the analysis by comparing to Monte Carlo simulations
and evaluates the effect of various system parameters in
the throughput performance of clustered MJD. Section
6 concludes the paper.

1.1 Notation
Throughout the formulations of this paper, E[·] denotes
expectation, (·)H denotes the conjugate matrix transpose,
(.)T denotes the matrix transpose, ⊙ denotes the Hada-
mard product and ⊗ denotes the Kronecker product.
The Frobenius norm of a matrix or vector is denoted by
||·|| and the delta function by δ(·). In denotes an n × n
identity matrix, In×m an n × m matrix of ones, 0 a zero
matrix and Gn×m ∼ CN (0, In) denotes n × m Gaussian

matrix with entries drawn form a CN (0, 1) distribution.
The figure of merit analyzed and compared throughout
this paper is the ergodic per-cell sum-rate throughput.a

2 Related work
2.1 Multicell joint decoding
This section reviews the literature on MJD systems by
describing the evolution of global MJD models and sub-
sequently focusing on clustered MJD approaches.
2.1.1 Global MJD
It was almost three decades ago when the paradigm of
global MJD was initially proposed in two seminal papers
[3,4], promising large capacity enhancements. The main
idea behind global MJD is the existence of a central pro-
cessor (a.k.a. “hyper-receiver”) which is interconnected
to all the BSs through a backhaul of wideband, delayless
and error-free links. The central processor is assumed
to have perfect channel state information (CSI) about all
the wireless links of the system. The optimal communi-
cation strategy is superposition coding at the UTs and
successive interference cancellation at the central pro-
cessor. As a result, the central processor is able to
jointly decode all the UTs of the system, rendering the
concept of intercell interference void.
Since then, the initial results were extended and modi-

fied by the research community for more practical pro-
pagation environments, transmission techniques and
backhaul infrastructures in an attempt to more accu-
rately quantify the performance gain. More specifically,
it was demonstrated in [5] that Rayleigh fading pro-
motes multiuser diversity which is beneficial for the
ergodic capacity performance. Subsequently, realistic
path-loss models and user distributions were investi-
gated in [6,7] providing closed-form ergodic capacity
expressions based on the cell size, path loss exponent
and geographical distribution of UTs. The beneficial
effect of MIMO links was established in [8,9], where a
linear scaling of the ergodic per-cell sum-rate capacity
with the number of BS antennas was shown. However,
correlation between multiple antennas has an adverse
effect as shown in [10], especially when correlation
affects the BS side. Imperfect backhaul connectivity has
also a negative effect on the capacity performance as
quantified in [11]. MJD has been also considered in
combination with DS-CDMA [12], where chips act as
multiple dimensions. Finally, linear MMSE filtering
[13,14] followed by single-user decoding has been con-
sidered as an alternative to the optimal multiuser deco-
der which requires computationally-complex successive
interference cancellation.
2.1.2 Clustered MJD
Clustered MJD is based on forming groups of M adjacent
BSs (clusters) interconnected to a cluster processor. As a
result, it can be seen as an intermediate state between

Table 1 Parameters for throughput results

Parameter Symbol Value Range Figure

Cluster size M 4 3 - 10 2, 3

a factor a 0.5 0.1 -1 4

UTs per cell K 5 2 - 10 5

Antennas per UT n 4 3 - 11 5

UT Transmit SNR g 20dB

Number of MC iterations 103
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traditional cellular systems (M = 1) and global MJD (M =
∞). The advantage of clustered MJD lies on the fact that
both the size of the backhaul network and the number of
UTs to be jointly processed decrease. The benefit is two-
fold; first, the extent of the backhaul network is reduced
and second, the computational requirements of MJD
(which depend on the number of UTs) are lower. The dis-
advantage is that the sum-rate capacity performance is
degraded by intercluster interference, especially affecting
the individual rates of cluster-edge UTs. This impairment
can be tackled using a number of techniques as described
here. The simplest approach is to just treat it as cochannel
interference and evaluate its effect on the system capacity
as in [15]. An alternative would be to use RDMA, namely
to split the time or frequency resources into orthogonal
parts dedicated to cluster-edge cells [16]. This approach
eliminates intercluster interference but at the same time
limits the available degrees of freedom. In DS-CDMA
MJD systems, knowledge of the interfering codebooks has
been also used to mitigate intercluster interference [12].
Finally, antenna selection schemes were investigated as a
simple way of reducing the number of intercluster inter-
ferers [17].

2.2 Interference alignment
This section reviews the basic principles of IA and sub-
sequently describes existing applications of IA on cellu-
lar networks.
2.2.1 IA preliminaries
IA has been shown to achieve the degrees of freedom
(dofs) for a range of interference channels [18-20]. Its
principle is based on aligning the interference on a
signal subspace with respect to the non-intended
receiver, so that it can be easily filtered out by sacrifi-
cing some signal dimensions. The advantage is that
this alignment does not affect the randomness of the
signals and the available dimensions with respect to
the intended receiver. The disadvantage is that the fil-
tering at the non-intended receiver removes the signal
energy in the interference subspace and reduces the
achievable rate. The fundamental assumptions which
render IA feasible are that there are multiple available
dimensions (space, frequency, time or code) and that
the transmitter is aware of the CSI towards the non-
intended receiver. The exact number of needed
dimensions and the precoding vectors to achieve IA
are rather cumbersome to compute, but a number of
approaches have been presented in the literature
towards this end [21-23].
2.2.2 IA and cellular networks
IA has been also investigated in the context of cellular
networks, showing that it can effectively suppress
cochannel interference [23,24]. More specifically, the

downlink of an OFDMA cellular network with clus-
tered BS cooperation is considered in [25], where IA
is employed to suppress intracluster interference while
intercluster interference has to be tolerated as noise.
Using simulations, it is shown therein that even with
unit multiplexing gain the throughput performance is
increased compared to a frequency reuse scheme,
especially for the cluster-centre UTs. In a similar set-
ting, the authors in [26] propose an IA-based resource
allocation scheme which jointly optimizes the fre-
quency-domain precoding, subcarrier user selection,
and power allocation on the downlink of coordinated
multicell OFDMA systems. In addition, authors in
[24] consider the uplink of a limited-size cellular sys-
tem without BS cooperation, showing that the inter-
ference-free dofs can be achieved as the number of
UTs grows. Employing IA with unit multiplexing gain
towards the non-intended BSs, they study the effect of
multi-path channels and single-path channels with
propagation delay. Furthermore, the concept of
decomposable channel is employed to enable a modi-
fied scheme called subspace IA, which is able to
simultaneously align interference towards multiple
non-intended receivers over a multidimensional space.
Finally, the effect of limited feedback on cellular IA
schemes has been investigated and quantified in
[25,27].

3 Channel model and throughput analysis
In this paper, the considered system comprises a modi-
fied version of Wyner’s linear cellular array [4,12,28],
which has been used extensively as a tractable model
for studying MJD scenarios [29]. In the modified
model studied herein, MJD is possible for clusters of
M adjacent BSs while the focus is on the uplink.
Unlike [23,24], IA is employed herein to mitigate inter-
cluster interference between cluster-edge cells. Let us
assume that K UTs are positioned between each pair
of neighboring BSs with path loss coefficients 1 and a,
respectively (Figure 1). All BSs and UTs are equipped
with n = K + 1 antennas b [10]. to enable IA over the
multiple spatial dimensions for the clustered UTs. In
this setting, four scenarios of intercluster interference
are considered, namely global MJD, IA, RDMA and CI.
It should be noted that only cluster-edge UTs employ
interference mitigation techniques, while UTs in the
interior of the cluster use the optimal wideband trans-
mission scheme with superposition coding as in [5].
Successive interference cancellation is employed in
each cluster processor in order to recover the UT sig-
nals. Furthermore, each cluster processor has full CSI
for all the wireless links in its coverage area. The fol-
lowing subsections explain the mode of operation for
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each approach and describe the analytical derivation of
the per-cell sum-rate throughput.

3.1 Global multicell joint decoding
In global MJD, a central processor is able to jointly
decode the signals received by neighboring clusters and,
therefore, no intercluster interference takes place. In
other words, the entire cellular system can be assumed
to be comprised of a single extensive cluster. As it can
be seen, this case serves as an upper bound to the IA
case. The received n × 1 symbol vector yi at any random
BS can be expressed as follows:

yi(t) = Gi,i(t)xi(t) + αGi,i+1(t)xi+1(t) + zi(t), (1)

where the n × 1 vector z denotes AWGN with
E[zi] = 0 and E[zizHi ] = I. The K n × 1 vector xi denotes
the transmitted symbol vector of the ith UT group with
E[xixHi ] = γ I where g is the transmit Signal to Noise
ratio per UT antenna. The n × Kn channel matrix
Gi,i ∼ CN (0, In) includes the flat fading coefficients of
the ith UT group towards the ith BS modelled as inde-
pendent identically distributed (i.i.d.) complex circularly
symmetric (c.c.s.) random variables. Similarly, the term
aGi, i+1(t)xi+1(t) represents the received signal at the ith
BS originating from the UTs of the neighboring cell
indexed i + 1. The scaling factor a < 1 models the
amount of received intercell interference which depends
on the path loss model and the density of the cellular
systemc. Another intuitive description of the a factor is
that it models the power imbalance between intra-cell
and inter-cell signals.
Assuming a memoryless channel, the system channel

model can be written in a vectorial form as follows:

y = Hx + z, (2)

where the aggregate channel matrix has dimensions
Mn × (M + 1)Kn and can be modelled as:

H = � � G (3)

with � = �̃ ⊗ In×kn being a block-Toeplitz matrix and

G ∼ CN (0, IMn). In addition, �̃ is a M × M + 1 Toeplitz
matrix structured as follows:

�̃ =

⎡
⎢⎢⎢⎣
1 α 0 · · ·
0 1 α
...

. . .
. . .

0 . . . 0 1

0
0
...
α

⎤
⎥⎥⎥⎦ (4)

Assuming no CSI at the UTs, the per-cell capacity is
given by the MIMO multiple access (MAC) channel
capacity:

CMJD =
1
M
E
[I(x;y—H)

]
=

1
M
E
[
log det

(
IMn + γHHH)] . (5)

Theorem 3.1. In the global MJD case, the per-cell
capacity for asymptotically large n converges almost
surely (a.s.) to the Marcenko-Pastur (MP) law with
appropriate scaling [6,10]:

CMJD
a.s.−→ KnVMP

(
M

M + 1
nγ
(
1 + α2) ,KM + 1

M

)
,

where VMP (γ ,β) = log
(
1 + γ − 1

4
φ(γ ,β)

)
+
1
β
log
(
1 + γβ − 1

4
φ(γ ,β)

)
− 1

4βγ
φ(γ ,β)

and φ(γ ,β) =

(√
γ
(
1 +
√

β
)2

+ 1 −
√

γ
(
1 −

√
β
)2

+ 1

)2

.

(6)

Proof. For the sake of completeness and to facilitate
latter derivations, an outline of the proof in [6,10] is

Cluster of M cells

G1,1 αG1,2 αGM,M+1αG0,1

MJD
GM,M

Useful MJD Signal
Intercluster Interference

Figure 1 Graphical representation of the considered cellular system modelled as a modified version of Wyner’s model. K UTs are
positioned between each pair of neighboring BSs with path loss coefficients 1 and a respectively. All BSs and UTs are equipped with n = K + 1
antennas. The UTs positioned within the box shall be jointly processed. The red links denote intercluster interference.
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provided here. The derivation of this expression is based
on an asymptotic analysis in the number of antennas n
® ∞:

1
n
CMJD = lim

x→∞
1
Mn

E
[
log det(IMn + γHHH)

]

= lim
x→∞E

[
1
Mn

Mn∑
i=1

log
(
1 +Mγ̃ λi

(
1
Mn

HHH
))]

=
∫ ∞

0
log(1 +Mγ̃ x)f∞

1
Mn

HHH

(x)dx

= K
∫ ∞

0
log(1 +Mγ̃ x)f∞

1
Mn

HHH

(x)dx

= KV 1
MnH

HH
(Mγ̃ )

a.s.−→ KVMP(q(�)Mγ̃ ,K),

(7)

where li (X) and f∞
X denote the eigenvalues and the

asymptotic eigenvalue probability distribution function
(a.e.p.d.f.) of matrix X respectively and
VX(x) = E[log(1 + xX)] denotes the Shannon transform
of X with scalar parameter x. It should be noted that
γ̃ = nγ denotes the total UT transmit power normalized
by the receiver noise powerd. The last step of the deriva-
tion is based on unit rank matrices decomposition and
analysis on the R-transform domain, as presented in
[6,10]. The scaling factor

q (�) �‖ �‖2/(Mn × (M + 1)Kn) (8)

is the Frobenius norm of the Σ matrix

‖�‖ �
√
tr{�H�} normalized by the matrix dimensions

and

q(�)
(a)
= q(�̃) =

1 + α2

M + 1
(9)

where step (a) follows from [10, Eq.(34)]. □

3.2 Interference alignment
In order to evaluate the effect of IA as an intercluster
interference mitigation technique, a simple precoding
scheme is assumed for the cluster-edge UT groups,
inspired by [24]. Let us assume a n × 1 unit norm refer-
ence vector v with ||v||2 = n and

y1 = G1,1x1 + αG1,2x2 + z1 (10)

yM = GM,MxM + αGM,M+1xM+1 + zM, (11)

where y1 and yM represent the received signal vectors
at the first and last BS of the cluster, respectively. The
first UT group has to align its input x1 towards the
non-intended BS of the cluster on the left (see Figure
A), while the Mth BS has to filter our the aligned

interference coming from the M + 1th UT group which
belongs to the cluster on the right. These two strategies
are described in detail in the following subsections:
3.2.1 Aligned interference filtering
The objective is to suppress the term aGM, M+1xM+1

which represents intercluster interference. It should be
noted that UTs of the M + 1th cell are assumed to have
perfect CSI about the channel coefficients GM, M+1. Let

us also assume that xji and Gj

ĩ,i
represent the transmitter

vector and channel matrix of the jth UT in the ith
group towards the ĩth BS. In this context, the following
precoding scheme is employed to align interference:

xjM+1 =
(
Gj

M,M+1

)−1
vjx

j
M+1, (12)

where vj = vvj is a scaled version of v which satisfies

the input power constraint E
[
xjM+1x

i
M+1

H
]
= γ I.. This

precoding results in unit multiplexing gain and is by no
means the optimal IA schemee [22] provide conditions
for classifying a scenario as proper or improper, a prop-
erty which is shown to be connected to feasibility., but
it serves as a tractable way of evaluating the IA perfor-
mance [23,24]. the feasibility of IA. Following this
approach, the intercluster interference can be expressed
as:

αGM,M+1xM+1 = α

K∑
j=1

Gj
M,M+1x

j
M+1 = α

K∑
j=1

Gj
M,M+1

(
Gj

M,M+1

)−1
vvjx

j
M+1 = αv

K∑
j=1

vjx
j
M+1. (13)

It can be easily seen that interference has been aligned
across the reference vector and it can be removed using
a K× n zero-forcing filter Q designed so that Q is a
truncated unitary matrix [19] and Qv = 0. After filter-
ing, the received signal at the Mth BS can be expressed
as:

ỹM = QGM,MxM + z̃M, (14)

Assuming that the system operates in high-SNR
regime and is therefore interference limited, the effect of
the AWGN noise colouring z̃M = QzM can be ignored,
namely E[z̃Mz̃

H
M] = IK.

Lemma 3.1. The Shannon transform of the covariance
matrix of QGM,M is equivalent to that of a K × K Gaus-
sian matrix GK×K.
Proof. Using the property det(I + gAB) = det(I + gBA),

it can be written that:

det
(
IK + γQGM,M(QGM,M)

H
)
= det(IK + γQGM,MGH

M,MQ
H)

= det
(
In + γGH

M,MQ
HQGM,M

)
.

(15)

The K × n truncated unitary matrix Q has K unit sin-
gular values and therefore the matrix product QHQ has
K unit eigenvalues and a zero eigenvalue. Applying
eigenvalue decomposition on QHQ, the left and right
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eigenvectors can be absorbed by the isotropic Gaussian
matrices GH

M,M and GM,M respectively, while the zero
eigenvalue removes one of the n dimensions. Using the
definition of Shannon transform [30], Eq. (15) yields

VQGM,M (QGM,M)
H(γ ) = VGK×KG

H
K×K(γ ). (16)

□
Based on this lemma and for the purposes of the ana-

lysis, QGM,M is replaced by GK × K in the equivalent
channel matrix.
3.2.2 Interference alignment
The Mth BS has filtered out incoming interference from
the cluster on the right (Figure 1), but outgoing inter-
cluster interference should be also aligned to complete
the analysis. This affects the first UT group which
should align its interference towards the Mth BS of the
cluster on the left (Figure 1). Following the same pre-
coding scheme and using Eq. (10)

G1,1x1 =
K∑
j=1

Gj
1,1x

j
1 =

K∑
j=1

Gj
1,1

(
Gj

0,1

)−1
vvjx

j
1, (17)

where Gj
0,1 represents the fading coefficients of the jth

UT of the first group towards the Mth BS of the neigh-
boring cluster on the left. Since the exact eigenvalue dis-

tribution of the matrix product Gj
1,1

(
Gj

0,1

)−1
vvj is not

straightforward to derive, for the purposes of rate analy-
sis it is approximated by a Gaussian vector with unit
variance. This approximation implies that IA precoding
does not affect the statistics of the equivalent channel
towards the intended BS.
3.2.3 Equivalent channel matrix
To summarize, IA has the following effects on the chan-
nel matrix H used for the case of global MJD. The inter-
cluster interference originating from the M + 1th UT
group is filtered out and thus Kn vertical dimensions
are lost. During this process, one horizontal dimension
of the Mth BS is also filtered out, since it contains the
aligned interference from the M + 1th UT group.
Finally, the first UT group has to precode in order to
align its interference towards the Mth BS of neighboring
cluster and as a result only K out of Kn dimensions are
preserved. The resulting channel matrix can be
described as follows:

HIA = �IA � GIA, (18)

where GIA ∼ CN (0, IMn−1)and

�IA =

⎡
⎣�1

�2

�3

⎤
⎦ (19)

with �1 = [In×K αIn×Kn0n×(M−2)Kn] being a n × (M - 1)
Kn + K matrixf, �2 = [0(M−2)n×K�̃M−2×M−1 ⊗ In×Kn]
being a (M - 2)n × (M - 1)Kn + K matrix and
�3 = [0n−1×(M−2)Kn+K In−1×K n] being a n - 1 × (M - 1)
Kn + K matrixg.
Since all intercluster interference has been filtered out

and the effect of filter Q has been already incorporated
in the structure of HIA, the per-cell throughput in the
IA case is still given by the MIMO MAC expression:

CIA =
1
M
E
[I(x; y|HIA)

]
=

1
M
E
[
log det

(
IMn−1 + γHIAHH

IA

)]
.

(20)

Theorem 3.2. In the IA case, the per-cell throughput
can be derived from the R-transform of the a.e.p.d.f. of
matrix 1

nH
H
IAHIA.

Proof. Following an asymptotic analysis where n® ∞:

1
n
CIA = lim

n→∞
1
Mn

E
[
log det(IMn−1 + γHIAHH

IA)
]

=
Mn − 1
Mn

lim
n→∞E

[
1

Mn − 1

Mn−1∑
i=1

log
(
1 + γ̃ λi

(
1
n
HIAHH

IA

))]

=
Mn − 1
Mn

∫ ∞

0
log(1 + γ̃ x)f∞

1
nHIAHH

IA

(x)dx

=
(M − 1)Kn + K

Mn

∫ ∞

0
log(1 + γ̃ x)f∞

1
nH

H
IAHIA

(x)dx

(21)

The a.e.p.d.f. of
1
nH

H
IAHIAis obtained by determining

the imaginary part of the Stieltjes transform S for real
arguments

f∞
1
n
HH

IAHIA

(x) = lim
x→0+

1
π

�
⎧⎨
⎩S1

n
HH

IAHIA

(x + jy)

⎫⎬
⎭ (22)

considering that the Stieltjes transform is derived from
the R-transform [31] as follows

S−1
1
n
HH

IAHIA

(z) = R1
n
HH

IAHIA

(−z) − 1
z
. (23)

□
Theorem 3.3. The R-transform of the a.e.p.d.f. of

matrix 1
nH

H
IAHIAis given by:

R1
n
HH

IAHIA

(z) =
3∑
i=1

R1
n
HH

i Hi

(z, ki,βi, qi) (24)

with k, b, q parameters given by:

H1 : k1 =
K + 2

MK +M − K
,β1 =

K
K + 1

+ K, q1 =
1 + (K + 1)α2

K + 2

H2 : k2 =
(M − 1)(K + 1)
MK +M − K

,β2 =
M − 1
M − 2

K, q2 =
M − 2
M − 1

(1 + α2)

H3 : k3 =
K + 1

MK +M − K
,β3 = K + 1, q3 = 1
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and R1
nH

H
i Higiven by theorem A.1.

Proof. Based on Eq.(19), the matrix HH
IAHIA

can be
decomposed as the following sum:

HH
IAHIA = HH

1 H1 +HH
2 H2 +HH

3 H3, (25)

where H1 = Σ1 ⊙Gn×(M-1)Kn+K, H2 = Σ2 ⊙ G(M-2)n×(M-

1)Kn+K and H3 = Σ3 ⊙ Gn-1×(M-1)Kn+K. Using the property
of free additive convolution [30] and Theorem A.1 in
Appendix A, Eq. (24) holds in the R-transform
domain. □

3.3 Resource division multiple access
RDMA entails that the available time or frequency
resources are divided into two orthogonal parts
assigned to cluster-edge cells in order to eliminate
intercluster interference [[16], Efficient isolation
scheme]. More specifically, for the first part cluster-
edge UTs are inactive and the far-right cluster-edge BS

is active. For the second part, cluster-edge UTs are
active and the far-right cluster-edge BS is inactive.
While the available channel resources are cut in half
for cluster-edge UTs, double the power can be trans-
mitted during the second part orthogonal part to
ensure a fair comparison amongst various mitigation
schemes. The channel modelling is similar to the one
in global MJD case (Eq. (1)), although in this case the
throughput is analyzed separately for each orthogonal
part and subsequently averaged. Assuming no CSI at
the UTs, the per-cell throughput in the RDMA case is
given by:

CRD =
CRD1 + CRD2

2

=
1
2M

(
E [log det (IMn + γHRD1H

H
RD1

)]
)
+ E[log det(I(M−1)n + γHRD2H

H
RD2

)],
(26)

where CRD1 and CRD2 denote the capacities for the first
and second orthogonal part respectively. For the first
part, the cluster processor receives signals from (M - 1)
K UTs through all M BSs and the resulting Mn × (M -
1)Kn channel matrix is structured as follows:

HRD1 = �RD1 � GMn×(M−1)Kn with HRD1 =

⎡
⎣ H̃RD1α

H̃
H̃RD1β

⎤
⎦

�RD1 =

⎡
⎣ �̃RD1α

�̃

�̃RD1β

⎤
⎦ and �̃RD1α

= [αIn×Kn 0n×(M−2)Kn], �̃RD1β
= [0n×(M−2)KnIn×Kn].

(27)

Theorem 3.4. For the first part of the RDMA case, the
per-cell throughput CRD1 can be derived from the R-
transform of the a.e.p.d.f of matrix 1

nH
H
RD1

HRD1, where:

R1
nH

H
RD1

HRD1

(z) = R1
nB

HB
(z,

1
M − 1

,K, a2)+
(M − 2)(1 + α2)

M − 1 − (1 + α2)K(M − 1)z
+R1

nB
HB
(z,

1
M − 1

,K, 1).(28)

Proof. Following an asymptotic analysis where n® ∞:

1
n
CRD1 = lim

n→∞
1
Mn

E[log det(IMn + γHRD1H
H
RD1

)]

= K
∫ ∞

0
log(1 + γ̃ x)

∫ ∞

1
nH

H
RD1

HRD1

(x)dx.
(29)

Using the matrix decomposition of Eq. (27) and free
additive convolution [30]:

R1
nH

H
RD1

HRD1

(z) = R1
n H̃

H
RD1α

H̃RD1α

(z) +R1
n H̃

H
H̃
(z) +R1

n H̃
H
RD1β

H̃RD1β

(z). (30)

Eq. (28) follows from Eq. (42) with
q = (M − 2)q(�̃) = (M − 2)(1 + α2)/(M − 1),β = K(M − 1)/(M − 2)

and theorem A.1. □
For the second part, the cluster processor receives sig-

nals from MK UTs through M - 1 BSs and the resulting
(M - 1)n ×MKn channel matrix is structured as follows:

HRD2 = �RD2 � G(M−1)n×MKn with HRD2 =
[
H̃RD2

H̃

]

�RD2 =
[
H̃RD2

�̃

]
and �̃RD2 = [2In×Kn αIn×Kn0n×(M−2)Kn],

(31)

where the factor 2 is due to the doubling of the trans-
mitted power.
Theorem 3.5. For the second part of the RDMA case,

the per-cell throughput CRD2can be derived from the R-
transform of the a.e.p.d.f. of matrix 1

nH
H
RD2

HRD2, where:

R1
nH

H
RD2

HRD2 (z)=

(M − 2)(1 + α2)
M − 1 − (1 + α2)K(M − 1)z

+R1
nB

HB
(z,

2
M

, 2K, 2 + α2) (32)

Proof. Following an asymptotic analysis where n ® ∞:

1
n
CRD2 = lim

n→∞
1
Mn

E[log det(I(M−1)n + γHRD2H
H
RD2

)]

= K
M − 1
M

∫ ∞

0
log(1 + γ̃ x)f∞

1
nH

H
RD2

HRD2

(x)dx.
(33)

The rest of this proof follows the steps of Theorem
3.4. □

3.4 Cochannel interference allowance
CI is considered as a worst case scenario where no sig-
nal processing is performed in order to mitigate inter-
cluster interference and thus interference is treated as
additional noise [15]. As it can be seen, this case serves
as a lower bound to the IA case. The channel modelling
is identical with the one in global MJD case (Eq. (1)),
although in this case the cluster-edge UT group contri-
bution aGM, M+1(t)xM+1(t) is considered as interference.
As a result, the interference channel matrix can be
expressed as:
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HI =
[
0Mn×Kn

αGn×Kn

]
. (34)

Assuming no CSI at the UTs, the per-cell throughput
in the CI case is given by [15,32-34]:

CCI =
1
M
E
[
log det

(
IMn + γHRD1H

H
RD1

(
IMn + γHIHH

I

)−1
)]

=
1
M
E
[
log det

(
IMn + γHHH)]− 1

M
E
[
log det

(
IMn + γHIHH

I

)]
= CMJD − CI,

(35)

where CI denotes the throughput of the interfering
UT group normalized by the cluster size:

CI =
1
M
E
[I(x; y|HI)

]
=

1
M
E
[
log det

(
IMn + γHIHH

I

)]
.

(36)

Theorem 3.6. In the CI case, the per-cell throughput
converges almost surely (a.s.) to a difference of two scaled
versions of the the MP law:

CCI
a.s.−→ KnVMP

(
M

M + 1
nγ
(
1 + α2) ,KM + 1

M

)
− Kn

M
VMP(α2nγ ,K). (37)

Proof. Following an asymptotic analysis in the number
of antennas n n ®∞:

1
n
CI = lim

x→∞
1
Mn

E
[
log det

(
IMn + γHIHH

I

)]
= lim

x→∞
1
Mn

E
[
log det

(
In + γ α2Gn×KnGH

n×Kn

)]
a.s.−→ K

M
VMP(α2γ̃ ,K).

(38)

Eq. (37) follows from Eq. (35), (38) and Theorem
3.1. □

3.5 Degrees of freedom
This section focuses on comparing the degrees of free-
dom for each of the considered cases. The degrees of
freedom determine the number of independent signal
dimensions in the high SNR regime [35] and it is also
known as prelog or multiplexing gain in the literature. It
is a useful metric in cases where interference is the main
impairment and AWGN can be considered unimportant.
Theorem 3.7. The degrees of freedom per BS antenna for

the global MJD, I A, RDM A and CI cases are given by:

dMJD = 1, dIA = 1 − 1
Mn

, dRN = 1 − 1
2M

, dCI = 1 − 1
M

. (39)

Proof. Eq. (39) can be derived straightforwardly by
counting the receive dimensions of the equivalent chan-
nel matrices (Eq. (3) for global MJD, Eq. (18) for IA,
Eqs. (27) and (31) for RDMA, Eq. (34) for CI) and nor-
malizing by the number of BS antennas. □

Lemma 3.2. The following inequalities apply for the
dofs of eq. (39):

dMJD ≥ dIA ≥ dRD > dCI. (40)

Remark 3.1. It can be observed that dIA = dRD only for
single UT per cell equipped with two antennas (K = 1, n
= 2). For all other cases, dIA >dRD. Furthermore, it is
worth noting that when the number of UTs K and
antennas n grows to infinity, limK,n ® ∞ dIA = dMJD

which entails a multiuser gain. However, in practice the
number of served UTs is limited by the number of anten-
nas (n = K+1) which can be supported at the BS- and
more importantly at UT-side due to size limitations.

3.6 Complexity considerations
This paragraph discusses the complexity of each scheme
in terms of decoding processing and required CSI. In
general, the complexity of MJD is exponential with the
number of users [36] and full CSI is required at the cen-
tral processor for all users which are to be decoded.
This implies that global MJD is highly complex since all
system users have to be processed at a single point. On
the other hand, clustering approaches reduce the num-
ber of jointly-processed users and as a result complexity.
Furthermore, CI is the least complex since no action is
taken to mitigate intercluster interference. RDMA has
an equivalent receiver complexity with CI, but in addi-
tion it requires coordination between adjacent clusters
in terms of splitting the resources. For example, time
division would require inter-cluster synchronization,
while frequency division could be even static. Finally, IA
is the most complex since CSI towards the non-
intended BS is also needed at the transmitter in order to
align the interference. Subsequently, additional proces-
sing is needed at the receiver side to filter out the
aligned interference.

4 Numerical results
This section presents a number of numerical results in
order to illustrate the accuracy of the derived analytical
expressions for finite dimensions and evaluate the per-
formance of the aforementioned interference mitigation
schemes. In the following figures, points represent
values calculated through Monte Carlo simulations,
while lines refer to curves evaluated based on the analy-
tical expressions of section 3. More specifically, the
simulations are performed by generating 103 instances
of random Gaussian matrices, each one representing a
single fading realization of the system. In addition, the
variance profile matrices are constructed deterministi-
cally based on the considered a factors and used to
shape the variance of the i.i.d. c.c.s. elements. Subse-
quently, the per-cell capacities are evaluated by
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averaging over the system realizations using: (a) Eq. (5)
for global MJD, (b) Eq. (10)-(14) and (20) for IA, (c) Eq.
(26) for RDMA, (d) Eq. (35),(36) for CI. In parallel, the
analytical curves are evaluated based on: (a) theorem 3.1
for global MJD, (b) theorems 3.2 and 3.3 for IA, (c) the-
orems 3.4 and 3.5 for RDMA, (d) theorems 3.1 and 3.6
for CI. Table 1 presents an overview of the parameter
values and ranges used for producing the numerical
results of the figures.
Firstly, Figure 2 depicts the per-cell throughput versus

the cluster size M for medium a factors. It should be
noted that the a factor combines the effects of cell size
and path loss exponent as explained in [37]. As expected
the performance of global MJD does not depend on the
cluster size, since it is supposed to be infinite. For all
interference mitigation techniques, it can be seen that
the penalty due to the clustering diminishes as the clus-
ter size increases. Similar conclusions can be derived by
plotting the degrees of freedom versus the cluster size

M (Figure 3). In addition, it can be observed that the IA
dofs approach the global MJD dofs as the number of
UTs and antennas increases. Subsequently, Figure 4
depicts the per-cell throughput versus the a factor. For
high a factors, RDMA performance converges to IA,
whereas for low a factors RDMA performance degrades.
It should be also noted that while the performance of
global MJD and RDMA increase monotonically with a,
the performances of IA and cochannel interference
degrade for medium a factors. Finally, Figure 5 depicts
the per-cell throughput versus the number of UTs per
cell K. It should be noted that the number of antennas
per UT n scale jointly with K. Based on this observation,
a superlinear scaling of the performance can be
observed, resulting primarily from the increase of spatial
dimensions (more antennas) and secondarily from the
increase of the system power (more UTs). As it can be
seen, the slope of the linear scaling is affected by the
selected interference mitigation technique.
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Figure 2 Per-cell throughput scaling versus the cluster size M. The performance of global MJD does not depend on the cluster size, while
for all interference mitigation techniques, the penalty due to the clustering diminishes as the cluster size increases. Parameters: a = 0.5, K = 5, n
= 4, g = 20 dB.
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6 Conclusion
In this paper, various techniques for mitigating inter-
cluster interference in clustered MJD were investigated.
The case of global MJD was initially considered as an
upper bound, serving in evaluating the degradation
due to intercluster interference. Subsequently, the IA
scheme was analyzed by deriving the asymptotic eigen-
value distribution of the channel covariance matrix
using free-probabilistic arguments. In addition, the
RDMA scheme was studied as a low complexity
method for mitigating intercluster interference. Finally,
the CI was considered as a worst-case scenario where
no interference mitigation techniques is employed.
Based on these investigations it was established that
for dense cellular systems the RDMA scheme should
be used as the best compromise between complexity
and performance. For average to sparse cellular

systems which is the usual regime in macrocell deploy-
ments, IA should be employed when the additional
complexity and availability of CSI at transmitter side
can be afforded. Alternatively, CI could be preferred
especially for highly sparse cellular systems.

A Proof of theorem
Theorem A.1. Let A = [0 B 0] be the concatenation of
the variance-profiled Gaussian matrix B = C ⊙ G and a
number of zero columns. Let also k be the ratio of non-
zero to total columns of A, b be the ratio of horizontal to
vertical dimensions of B and q the Frobenius norm of C
normalized by the matrix dimensions. The R-transform
of AH A is given by:

R1
n
AHA

(z, k,β , q) =
k − zqk(β + 1) ±√k2(q2β2z2 − 2qβz − 2z2q2β + 1 − 2qz + z2q2 + 4zqk)

2z(qβz − k) (41)
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Figure 3 Degrees of freedom versus the cluster size M. The IA dofs approach the global MJD dofs as the number of UTs and antennas
increases. Parameters: a = 0.5, K = 5, n = 4, g = 20 dB.
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Proof. Let B = C ⊙ Gn × m be a variance-profiled
Gaussian matrix with b = m/n and q = ||C||2/nm.
According to [10], the R-transform of 1

nB
HB is given by:

R1
n
BHB

(z) =
q

1 − βqz
. (42)

Using eq. (23), the Stieltjes transform of 1
nB

HB can be
expressed as:

S1
n
BHB

(z) =
−z + q − qβ ±√z2 − 2zq − 2zqβ + q2 − 2q2β + q2β2)

2zqβ
. (43)

Matrix 1
nA

HA has identical eigenvalues to 1
nB

HB plus a
number of zero eigevalues with 0 <k < 1 defined as the
ratio of non-zero eigenvalues over the total number of
eigenvalues. As a result, the a.e.p.d.f. of

1
nA

HAcan be

written as:

f1
n
AHA

(z) = kf1
n
BHB

(z) + (1 − k)δ(x).
(44)

Using the definition of the Stieltjes transform [30]:

S 1
nA

HA
(z) = kS 1

nB
HB
(z) − 1 − k

z
(45)

and employing eq. (23), the proof is complete. □
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Notes
aThe term throughput is used instead of capacity since
the described techniques are suboptimal in the informa-
tion-theoretic sense and lead to achievable sum-rates
except for MJD which leads to MIMO MAC capacity.
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Figure 4 Per-cell throughput scaling versus the a factor. For high a factors, RDMA performance converges to interference alignment,
whereas for low a factors RDMA performance degrades even beyond the cochannel interference bound. While the performance of global MJD
and RDMA increase monotonically with a, the performances of interference alignment and cochannel interference degrade for medium a
factors. Parameters: M = 4, K = 5, n = 4, g = 20 dB.
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bThe multiple antennas are assumed to be uncorre-
lated although the analytical results can be extended in
the correlated case based on the principles described in

cFor more details on the modelling of the a para-
meter, the reader is referred to [37].

dFor the purposes of the analysis the variable γ̃ is kept
finite as the number of antennas Mn grows large, so
that the system power does not grow to infinity.

eDepending on the signal dimensions and the channel
coefficients, more than one degree of freedom per user
could be achieved. The feasibility of higher multiplexing
gain has been studied in [21,22]. More specifically,
authors in [21] provide an algorithm which determines
the achievable multiplexing gain by minimizing the
interference leakage, while authors in

fThe structure of the first block of Σ1 originates in the

Gaussian approximation of
1
a
Gj

1,1(G
j
0,1)

−1vvj.

gThe structure of the last block of Σ3 is based on
Lemma 3.1.
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