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We use the Padé approximation (PA) technique to obtain closed-form approximate expressions for the moment-generating func-
tion (MGF) of the Weibull random variable. Unlike previously obtained closed-form exact expressions for the MGF, which are
relatively complicated as being given in terms of the Meijer G-function, PA can be used to obtain simple rational expressions for
the MGF, which can be easily used in further computations. We illustrate the accuracy of the PA technique by comparing its results
to either the existing exact MGF or to that obtained via Monte Carlo simulations. Using the approximate expressions, we analyze
the performance of digital modulation schemes over the single channel and the multichannels employing maximal ratio combin-
ing (MRC) under the Weibull fading assumption. Our results show excellent agreement with previously published results as well
as with simulations.
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1. INTRODUCTION

The use of the Weibull distribution as a statistical model that
better describes the actual short term fading phenomenon
over outdoor as well as indoor wireless channels has been
proposed decades ago [1–3]. More recently, the appropri-
ateness of the Weibull distribution has been further con-
firmed by experimental data collected in the cellular band
by two independent groups in [4, 5]. Since then, the Weibull
distribution has attracted much attention among the radio
community. In particular, the performance of receive diver-
sity systems over Weibull fading channels has been exten-
sively studied in [6–13]. Also, a closed-form expression for
the moment-generating function (MGF) of the Weibull ran-
dom variable (RV) was obtained in [7] when theWeibull fad-
ing parameter (which will be defined in the sequel), usually
denoted by m, assumes only integer values. Another expres-
sion for the MGF for arbitrary values of m was also derived
in [8]. Both expressions were given in terms of the Meijer G-
function and were used for evaluating the performance of
digital modulation schemes over the single-channel recep-
tion and multichannel diversity reception assuming Weibull

fading. Also, in [14], the second-order statistics and the ca-
pacity of the Weibull channel have been derived. Finally,
we have analyzed the performance of cellular networks with
composite Weibull-lognormal faded links as well as the per-
formance of MRC diversity systems in Weibull fading in
presence of cochannel interference (CCI) in terms of outage
probability in [15, 16], respectively.

The closed-form expressions provided in [7, 8], despite
being the first of their kind in the open literature and de-
spite having a very elegant form, suffer from a major draw-
back. The expressions involve the Meijer G-function, which,
although easy to evaluate by itself using the modern math-
ematical packages such as Mathematica and Maple, these
packages fail to handle integrals involving this function and
lead to numerical instabilities and erroneous results when m
increases. This renders the expressions impractical from the
ease of computation point of view. Hence, it is highly desir-
able to find alternative closed-form expressions for the MGF
of theWeibull random variable (RV) that are simple to evalu-
ate and in the same time can be used for arbitrary values ofm.

Padé approximation (PA) is a well-known method that is
used to approximate infinite power series that are either not
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guaranteed to converge, converge very slowly or for which a
limited number of coefficients is known [17, 18]. This tech-
nique was recently used for outage probability calculation in
diversity systems in Nakagami fading in [19]. The approxi-
mation is given in terms of a simple rational function of ar-
bitrary numerator and denominator orders. In this paper, we
illustrate how this technique can be used to obtain simple-to-
evaluate approximate rational expressions for theMGF of the
Weibull RV based on the knowledge of its moments. We then
use these expressions to evaluate the performance of linear
digital modulations over flat Weibull fading channels in the
case of both single-channel reception and multichannel re-
ception employing maximal ratio combining (MRC).

The rest of the paper is organized as follows. In Section 2,
we give a brief overview of the Padé approximation tech-
nique. In Section 3, we apply this technique to the prob-
lem at hand. The performance of digital modulation sys-
tems over the Weibull fading channel is then revisited in
Section 4. Examples and numerical results as well as compar-
isons with previously published results in the literature and
Monte Carlo simulations are provided in Section 5 before the
paper is finally concluded in Section 6.

2. PADÉ APPROXIMATIONOVERVIEW

Let g(z) be an unknown function given in terms of a power
series in the variable z ∈ C, the set of complex numbers,
namely,

g(z) =
∞∑

n=0
cnz

n, cn ∈ R, (1)

where R is the set of real numbers. There are several reasons
to look for a rational approximation for the series in (1). The
series might be divergent or converging too slowly to be of
any practical use. Also, it is possible that a compact rational
form is needed in order to be used in later computations.
Not to mention the fact that it might be possible that only
few coefficients of {cn} are known [17]. The PA method is
capable of dealing with all the problems mentioned above.
In particular, it can capture the limiting behavior of a power
series in a rational form.

The one-point PA of order [Np/Nq], P[Np/Nq](z), is defined
from the series g(z) as a rational function by [17, 18]

P[Np/Nq](z) =
∑Np

n=0 anzn
∑Nq

n=0 bnzn
, (2)

where the coefficients {an} and {bn} are defined such that

∑Np

n=0 anzn
∑Nq

n=0 bnzn
=

Np+Nq∑

n=0
cnz

n +O
(
zNp+Nq+1

)
, (3)

withO(zNp+Nq+1) representing the terms of order higher than
Np +Nq. It is straightforward to see that the coefficients {an}

and {bn} can be easily obtained by matching the coefficients
of like powers on both sides of (3). Specifically, taking b0 = 1,
without loss of generality, one can find that

Nq∑

n=0
bncNp−n+ j = 0, 1 ≤ j ≤ Nq, (4)

or equivalently,

Nq∑

n=1
bncNp−n+ j = −cNp+ j , 1 ≤ j ≤ Nq. (5)

The above equations form a system ofNq linear equations for
the Nq unknown denominator coefficients. This system can
be written in matrix form as

Cb = −c, (6)

where

b = (bNq · · · bk · · · b1
)T
,

c = (cNp+1 · · · cNp+k+1 · · · cNp+Nq

)T
,

C =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

cNp−Nq+1 cNp−Nq+2 . . . cNp

...
...

...
...

cNp−Nq+k cNp−Nq+k+1 . . . cNp+k−1
...

...
...

...
cNp cNp+1 . . . cNp+Nq−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(7)

with (·)T representing the transpose operation. After solving
the matrix equation in (6), the set {an} can be obtained by

aj = cj +
min(Nq , j)∑

i=1
bjc j−i, 0 ≤ j ≤ Np. (8)

An important remark is now in order. It might seem that the
choice of the values of Nq and Np is completely arbitrary.
This, in fact, is not accurate. An insightful look at (6) re-
veals that in order to be able to uniquely solve such system
of equations, it is necessary to have |C| �= 0, where | · | is
the determinant. In [17], using what we refer to as the rank-
order plots, it is shown that there exists a value of Nq above
which the matrix C becomes rank deficient. This clearly rep-
resents an upper bound on the permissible values ofNq. Also,
as mentioned in [20], Np is chosen to be equal to Nq − 1 as
this guarantees the convergence of the PA. In this paper, we
takeNq such that it guarantees the uniqueness of the solution
of (6) and Np = Nq − 1.

3. APPLICATION TO THEWEIBULLMGF

The MGF of an RV X > 0 is defined as

MX(s) = E
(
e−sX

) =
∫∞

0
e−sx fX(x)dx, (9)

where E(·) is the expectation operator and fX(x) is the prob-
ability density function (PDF) of X . The PDF of the Weibull
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RV is given by

fX(x) = mxm−1

γ
exp

(
− xm

γ

)
, x ≥ 0, (10)

where m > 0 is usually referred to as the Weibull distribu-
tion fading parameter and γ > 0 is a parameter related to
the moments and the fading parameter of the distribution.
As mentioned earlier, a closed-form expression available for
MX(s,m, γ), the MGF of the Weibull RV with parameters
(m, γ), is provided in [8] and is restated here for convenience:

MX(s,m, γ) = m

γ

(k/p)1/2(p/s)m

(2π)(p+k)/2

×G
k,p
p,k

(
1

γksp
pp

kk

∣∣∣∣
Δ(p, 1−m)
Δ(k, 0)

)
,

(11)

where p and k are the minimum integers chosen such that
m = p/k,Δ(n, ζ) = ζ/n, (ζ+1)/n, . . . , (ζ+n−1)/n andGm,n

p,q (·)
is theMeijerG-function [21, Equation (9.301)]. Based on the
discussion presented in Section 1, it is required to find an al-
ternative closed-form expression for the MGF which is sim-
pler to use in computations and in the same time valid for
any value of m. Towards that end, we use the PA technique
as follows. It is interesting to note that the moments of the
Weibull RV are known in closed-form and are given by [10]

E
(
Xn
) = γn/mΓ

(
1 +

n

m

)
, (12)

where Γ(·) is the Gamma function. Using the Taylor series
expansion of e−sX , the MGF can be expressed in terms of a
power series as

MX(s,m, γ) =
∞∑

n=0

(−1)n
n!

E
(
Xn
)
sn =

∞∑

n=0
cn(m, γ)sn, (13)

where cn(m, γ) = ((−1)n/n!)γn/mΓ(1 + n/m). The infinite
series in (13) is not guaranteed to converge for all values
of s. Furthermore, it is not possible to truncate the series
since it is not clear what the truncation criterion is and
again, convergence is not guaranteed. However, comparing
(13) to (1), it is clear that a rational approximate expres-
sion forMX(s,m, γ) can be obtained using the methodology
outlined in Section 2. In the following, we will denote the
approximate expression for the MGF of a Weibull RV with
parameters (m, γ) having a denominator with order Nq by
P[Nq−1/Nq](s,m, γ).

4. PERFORMANCE OF DIGITALMODULATIONS
OVER THEWEIBULL FADING CHANNEL

In [7], based on the obtained closed-form expression for the
Weibull MGF, and using the MGF approach [22], a compre-
hensive study of the performance of digital modulations over

the Weibull slow flat-fading channel has been conducted. It
is well known that, in general, the performance of any com-
munication system, in terms of bit error rate (BER), symbol
error rate (SER), or signal outage, will depend on the statis-
tics of the signal-to-noise ratio (SNR). Assuming that both
the average signal and noise powers are unity, then the SNR
will be equal to the squared channel amplitude, X2. One of
the interesting properties of the Weibull RV with parame-
ters (m, γ) is that raising it to the kth power results in an-
other Weibull RV with parameters (m/k, γ). Hence, for a fad-
ing channel having a Weibull distributed amplitude with pa-
rameters (m, γ), the SNR is clearly Weibull distributed with
parameters (m/2, γ). Due to the inapplicability of the MGF
closed-form expression in [7] to the noninteger values of m,
only results pertaining to integer values of m/2 (or, equiva-
lently, to even integer values of m) were presented therein.
Even if the expression in (11) is to be used, which is valid
for arbitrary values of m, no software package will be able
to handle the integrations involving the resulting high-order
Meijer G-function [8]. Now, since the approximate expres-
sion obtained via the PA technique is very simple and does
not have any restriction on the values ofm, it is now possible
to very easily obtain performance results for odd integer as
well as noninteger values ofm.

For convenience, we note here some of the key expres-
sions presented in [7] that are relevant to our discussion. For
an MRC system with L identical branches, the outage proba-
bility, Pout,MRC(ζ) � P(SNRMRC < ζ), is given by

Pout,MRC(ζ) = 1
2π j

∫ ε+ j∞

ε− j∞

[
MX(s,m/2, γ)

]L

s
esζds, (14)

whereMX(s,m/2, γ) is the MGF of the SNR per branch, ε is
a properly chosen constant in the region of convergence in
the complex s-plane, and SNRMRC is the total SNR, which is
equal to the sum of the branches SNRs. For the same system
employing M-ary phase shift keying (M-PSK), the average
SER can be found from

SERM−PSK = 1
π

∫ (M−1)π/M

0

[
MX

(
gPSK
sin2 φ

,m/2, γ
)]L

dφ,

(15)

where gPSK = sin2(π/M). Finally, for M-ary quadrature am-
plitude modulation (M-QAM), the average SER is given by

SERM−QAM = 4
π

(
1− 1√

M

)

×
{∫ π/2

0

[
MX

(
gQAM
sin2 φ

,m/2, γ
)]L

dφ

−
∫ π/4

0

[
MX

(
gQAM
sin2 φ

,m/2, γ
)]L

dφ

}
,

(16)
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Figure 1: Padé approximation P[4/5]( jω,m, γ) and exact MGF using (11) form = 2 and different values of γ: (a) real part and (b) imaginary
part.

where gQAM = 3/2(M − 1). Clearly, using the rational ap-
proximation for the MGF provided by the PA technique, all
the integrals in (14) through (16) can be easily evaluated nu-
merically and the result is guaranteed to be very stable. In
fact some of the integrals, like the one in (14) can be found
in closed form as it is equivalent to the problem of finding
the inverse Laplace transform of a rational function, which
can be easily solved using the partial fractions expansion.

5. EXAMPLES ANDNUMERICAL RESULTS

5.1. Weibull MGF examples

In this section, we first illustrate through some examples the
efficiency and accuracy of the PA technique when approxi-
mating the MGF of the Weibull RV.

Consider the interesting case of m = 1. In this case, it
is easy to check that C is rank deficient except for Nq = 1.
Hence, we choose Nq = 1 and Np = 0. The only unknown,
b1, can now be easily found from b1 = −c1(1, γ)/c0(1, γ) = γ.
Also, a0 = c0(1, γ) = 1. The approximate MGF in this case is
thus given by

P[0/1](s, 1, γ) = 1
1 + γs

. (17)

Interestingly, in the special case of m = 1, the Weibull distri-
bution reduces to the exponential distribution with parame-
ter 1/γ, which has an MGF, MX(s, 1, γ) = 1/(1 + γs), which
is exactly the same expression given in (17). Hence, the PA
technique leads to an exact expression for the special case of
m = 1.

We now present some results for different combinations
ofm and γ. We use the PA with Nq = 4, that is, P[4/5](s,m, γ)
as an approximation for the MGF. For example, the PA for
the MGF withm = 2 and γ = 3.5 is found to be

P[4/5](s, 2, 3.5)

= 1 + 0.328s+0.117s2+7.119×10−3s3+2.608× 10−4s4

1+1.1986s+1.659s2+0.734s3+0.173s4+0.018s5
.

(18)

Figure 1 shows the real and imaginary parts of both the
PA and the exact MGF using (11) versus ω, where s = jω,
j = √−1, for m = 2 and different values of γ. Clearly, there
is a perfect agreement between both expressions. It is now of
interest to inspect the accuracy of the PA for noninteger val-
ues of m. For the sake of comparison, we revert to obtaining
the MGF via Monte Carlo simulations this time. In Figure 2,
we again plot the real and imaginary parts of the PA along
with those of the MGF from simulations. From the plots, it
is evident that the PA can be used to give a very accurate es-
timate of the MGF for arbitrary values ofm and γ. Note that
if the accuracy is not satisfactory for some cases, it is always
possible to choose a higher value of Nq to enhance the accu-
racy as long as the matrix C is full rank.

5.2. Communication over theWeibull fading channel

Figure 3 shows the approximate outage probability curves for
a dual-branch MRC system (L = 2) versus the average SNR
per branch, E(X2). For these curves, either P[4/5](s,m, γ) or,
if |C| is found to be 0, P[3/4](s,m, γ) is used. For the even in-
teger values of m, the outage probability obtained using the
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Figure 2: Padé approximation P[4/5]( jω,m, γ) and MGF obtained via Monte Carlo simulations for different combinations of noninteger m
and γ: (a) real part and (b) imaginary part.
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Figure 3: Simulated and PA outage probability for a dual-branch
MRC system over Weibull fading channel for different values of m.
The outage probability obtained using the exact expression is also
shown for even integer values ofm.

exact expression is also shown. Monte Carlo simulations are
provided for all the cases as well. It is evident that the approx-
imate results are in perfect agreement with the simulations
and the exact expression.
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MRC channels form = 2 and 4.

The SER of an 8-PSK system is depicted in Figures 4
and 5. Comparison is first established with the exact SER for
the two cases of m= 2 and m= 4. Again, perfect matching
between the two curves is noticed. In Figure 5, the case of
single-channel and dual-branch MRC system with odd and
noninteger values of m is considered. Finally, similar results
for the case of 16-QAM are presented in Figures 6 and 7.
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Padé approximations
Exact expression

m = 2, single
m = 4, single

m = 2, MRC

m = 4, MRC

Figure 6: Exact and PA SER for 16-QAM with single- and dual-
branch MRC channels form = 2 and 4.

6. CONCLUSIONS

In this paper, we illustrated how the PA technique can be
used to find simple closed-form approximate expressions for
the MGF of the Weibull RV. Several examples have been
presented, which show perfect agreement between the ap-
proximate technique and a previously published closed-form
exact expression. When the exact expression is difficult to
handle numerically, comparison with Monte Carlo simu-
lations was performed. Using the PA technique, we also
analyzed the performance of digital modulations over the
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Figure 7: PA SER for 16-QAM with single- and dual-branch MRC
channels for different noninteger and odd integer values ofm.

Weibull fading channel with single- and multichannel MRC
reception. We showed that the approximate results for the
SER or outage probability match very well the exact results.
We also presented a new set of results for the cases of odd
and noninteger values of the Weibull fading parameter. The
PA technique indeed proves to be an invaluable tool in the
performance analysis of communications over the Weibull
fading channels.
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