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The capacity of a cellular multiuser MIMO system depends on various parameters, for example, the system structure, the transmit
and receive strategies, the channel state information at the transmitter and the receiver, and the channel properties. Recently,
the main focus of research was on single-user MIMO systems, their channel capacity, and their error performance with space-
time coding. In general, the capacity of a cellular multiuser MIMO system is limited by additive white Gaussian noise, intracell
interference from other users within the cell, and intercell interference from users outside the considered cell. We study one
point-to-point link, on which interference acts. The interference models the different system scenarios and various parameters.
Therefore, we consider three scenarios in which the noise is subject to different constraints. A general trace constraint is used
in the first scenario. The noise covariance matrix eigenvalues are kept fixed in the second scenario, and in the third scenario the
entries on the diagonal of the noise covariance matrix are kept fixed. We assume that the receiver as well as the transmitter have
perfect channel state information. We solve the corresponding minimax programming problems and characterize the worst-case
noise and the optimal transmit strategy. In all scenarios, the achievable capacity of the MIMO system with worst-case noise is
equal to the capacity of some MIMO system in which either the channels are orthogonal or the transmit antennas are not allowed
to cooperate or in which no channel state information is available at the transmitter. Furthermore, the minimax expressions fulfill
a saddle point property. All theoretical results are illustrated by examples and numerical simulations.
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1. INTRODUCTION

Multiple antenna systems provide high spectral efficiencies
and improved performance [1, 2]. In next-generation wire-
less systems, multiple users equipped with multiple anten-
nas will transmit simultaneously to a base station with mul-
tiple receive antennas. So far, the emphasis of research was on
the point-to-point single-user case. The achievable rates, the
tradeoff between diversity and multiplexing, and space-time
coding for single-userMIMO systems were intensely studied.

The analysis of multiuser MIMO systems is very impor-
tant, because usually more than one user is involved in cellu-
lar as well as ad hoc systems. Up to now, only little is known
about MIMO multiuser systems. The achievable rates and
the transmission strategy depend on the following.

(i) Structure of the wireless MIMO system. In the common
cellular approach, many mobiles share one base sta-

tion which controls the scheduling and transmission
strategies, for example, power control in a centralized
manner. In cellular systems, the intercell and intracell
interference can be controlled by spectrum and time
allocation. InMIMO system, an additional dimension,
namely, the space, is available for allocation purposes.
In ad-hoc systems, the properties of one adaptive tem-
porarily created wireless link cannot be controlled by
a central entity. One mobile could use possible sur-
rounding mobiles to build a virtual MIMO link. In an
arbitrary way, interference which is created by other
mobiles building virtualMIMO links, or just transmit-
ting, acts on one virtual MIMO link.

(ii) Transmit strategies. Obviously, the transmit strategies
of the participating mobiles influence the achievable
rate and the properties of the complete system. The
transmit strategies in turn depend on the type of
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channel state information (CSI) at the transmitter, that
is, the more CSI available about the own channel as
well as about the other users and the interference, the
more adaptive and smart transmission strategies can
be applied. If no CSI is available at the transmitter, the
use of multiuser space-time (-spreading) codes is ad-
vised.

(iii) Receive strategies. At the receiver, different decoding
and detection strategies can be used. The range is from
single-user detection algorithms which treat the other
users a noise, up to linear and even nonlinear mul-
tiuser detection algorithms. Of course, the receiver ar-
chitecture depends on the type of CSI, too.

(iv) System parameters. In general, the scenario in which
the wireless system is applied is an important factor. In
home or office scenarios, the system parameter heavily
differ from parameters in public access, hot-spots, or
high velocity scenarios. User parameters, resource pa-
rameters, and especially channel parameters have to be
taken into account. The achievable performance and
throughput depend on those system parameters.

The impact of interference in single-cell multiuser MIMO
systems was studied in [3, 4, 5]. Joint processing leads to
a set of optimal transmit covariance matrices which maxi-
mize the sum capacity. These results are only valid for perfect
CSI at both sides of the link, and for successive interference
cancellation (SIC) for the uplink or Costa precoding for the
downlink. For independent decoding or precoding, the com-
plicated optimization problem was studied in [6]. Under the
assumption of a multiuser MMSE receiver, the minimization
of the average sum MSE and the structure of the individual
MSE region was analyzed in [7].

In this work, we study one point-to-point link, on which
interference acts. We model the impact of the mentioned ef-
fects on the system by a special noise covariance matrix and
analyze for different scenarios the structure of the capacity
of the resulting MIMO channel. We do not assume a priori
structure of the interference. It could be the uplink or down-
link transmission, interference could be intercell or intracell
interference. Receiver noise, intercell, and intracell interfer-
ence restrict the achievable capacity. Therefore, it is impor-
tant to study minimax expressions for the worst-case noise
capacity, like

min
Z∈Z

max
Q∈Q

F(Z,Q), (1)

in which the noise covariance matrix Z is in some set of ad-
missible noisesZ and the transmit strategy, that is, the trans-
mit covariance matrix Q belongs to some set of admissible
transmit strategies Q. The function F is an arbitrary objec-
tive function, for example, capacity. If F is the sum capacity,
we know that

F(A,B) = log

(
det(A + B)

detA

)
(2)

is convex in A (see [8, Lemma II.3]) and concave in B (see [8,
Lemma II.4]).

In [9], expressions like (1) were studied under different
admissible sets Z and Q. In order to characterize the mini-
max points, the authors in [9] used the dual Lagrangian ap-
proach. Based on the characterization of the broadcast rate
region in [10], in [11], the authors established a duality and
reciprocity theory between the SIMOmultiple access sum ca-
pacity point, MIMO uplink capacity, MIMO downlink ca-
pacity, and MISO broadcast sum capacity point for systems
which apply SIC and Costa precoding. The duality between
the SIMOmultiple access channel (MAC) sum capacity point
and MIMO uplink capacity corresponds to the noise con-
straints in Scenario III. For independent coding and decod-
ing, the uplink-downlink duality for SIMO was shown in
[12].

In [13], the author analyzes the MIMO channel capacity
with unknown interfering users and no CSI at the transmit-
ter and perfect CSI at the receiver. The optimum signaling
for achieving the channel capacity is characterized by ana-
lyzing the second derivative of the mutual information and
showing that in some cases it is negative and in some cases
it is positive. Therefore, in these cases in which the interfer-
ence is sufficiently weak or sufficiently strong, the optimum
signaling is either equal power allocation across all antennas
or single-antenna allocation. In [14], the mutual informa-
tion of a MIMO system with multiple users and perfect CSI
at both sides is considered and different signaling approaches
are considered. The problem of sum capacity inMIMOMAC
has been solved for fixed individual powers in [15] and for a
sum power constraint in [3, 4].

We are interested in the general limits of the MIMO
channel capacity under different types of noise plus inter-
ference. Therefore, we consider three scenarios in which the
noise is subject to different constraints. In scenario I, the
noise covariance matrix is trace constrained. This is the most
generous constraint, because only the sum noise power is
kept fixed. In scenario II, the eigenvalues of the noise covari-
ance matrix are fixed. This leads to the notion of the worst-
case directions which correspond to the eigenvectors of the
noise covariance matrix Z. Finally, in scenario III, the diag-
onal elements of the noise covariance matrix are fixed. This
yields the worst-case colored noise. We show for all three sce-
narios that the achievableminimax capacity fulfills the saddle
point property. Furthermore, the wort case noise in Scenario
I and Scenario II leads to two different types of worst-case
orthogonal channels. In Scenario I, the complete CSI at the
transmitter is lost and therefore the cooperation, too, because
CSI is necessary for successful cooperation at the transmit
side. In Scenario III, the capacity of the MIMO channel with
worst-case colored noise equals the capacity of a multiuser
SIMO channel with white noise, that is, the transmitter co-
operation1 gets lost. The contributions of this paper are as
follows.

1Cooperation between transmit antennas means that the spatial multi-
plexed data streams can be distributed in an arbitrary fashion over the anten-
nas. For example, a V-BLAST system [16] does not need cooperation among
the transmit antennas. An SVD-based approach needs cooperation.
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(1) The capacity of a MIMO closed-loop system, that is,
perfect CSI at the transmitter, with worst-case noise
under a trace constraint (or worst-case interference)
equals the capacity of a MIMO open-loop system, that
is, no CSI at the transmitter, with white noise, that
is, without interference. The structure of the equiva-
lent system is a single-user MIMO system with un-
correlated noise and without CSI at the transmitter.
We completely characterize the solution of the corre-
sponding minimax expression in (1).

(2) The worst-case noise directions correspond with the
left eigenvectors of the channel matrixH. The optimal
transmit directions correspond with the right eigen-
vectors of the channel matrixH. Both are independent
of each other. Therefore, the minimax problem fulfills
the saddle point property. The power allocation is then
the well-known waterfilling solution.

(3) The worst-case colored noise decomposes the closed-
loop MIMO system into a SIMO MAC with amplified
white noise. The transmitter cooperation goes loose
and the noise is amplified by a factor equal to the num-
ber of receive antennas.

A minimax approach in [17] studies the maximum of the
mutual information with respect to the transmit covariance
matrix and the minimum with respect to the channel real-
ization of the instantaneous capacity in a flat-fading MIMO
channel. In addition to this, the worst-case capacity of a
MIMO system is studied in [18]. In [19], the MIMO broad-
cast channel (BC) was studied and the structure of the worst-
case noise of the corresponding cooperative MIMO system
which minimizes the Sato upper bound was analyzed.

The paper is organized as follows: The signal model,
noise scenarios, and important preliminary results are pre-
sented in the next section. In Section 3, we study the worst-
case noise under a trace constraint. In Section 4, we ana-
lyze the worst-case noise direction for fixed noise covari-
ance matrix eigenvalues and in Section 5, we investigate the
worst-case colored noise problem. Interpretations, illustra-
tions, and discussions are provided in Section 6 and we con-
clude the paper in Section 7.

1.1. Notation
Vectors are denoted by bold letters a, matrices are denoted
by bold capital letters A. det(A) is the determinant of matrix
A. rank(A) is the rank of the matrix A. tr(A) is the trace,
that is, tr(A) = ∑rank(A)

i=1 Aii. E is the expectation operator.
All logarithms log(a) in this work are logarithms dualis. nT
is the number of transmit antennas and nR is the number of
receive antennas.

2. SYSTEMMODELS, NOISE SCENARIOS,
AND PRELIMINARIES

2.1. Systemmodels
The analysis in this work can be applied to the following sys-
tems, namely, the MIMO MAC and the MIMO BC. Using
the MIMO MAC, the basic assumptions are motivated. The
MIMO BC can be used for motivation, too.

U

B

S

K K

K

Figure 1: Cellular MIMOmultiuser uplink.

2.1.1. MIMOMAC

We consider the typical flat-fading MIMOMAC model with
nT transmit and nR receive antennas in cellular multiuser up-
link transmission. In Figure 1, we show an uplink transmis-
sion from user (U) to the base (B). On the one hand, intercell
interference comes from neighbor cells (K) and on the other
hand users in the same cell create intracell interference (S).

Following the quasistatic block flat-fading cellular
MIMO multiuser uplink model considered above, the re-
ceived signal is given by

y = Hx︸︷︷︸
user signal

+
∑
k∈S

Hkxk︸ ︷︷ ︸
intracell interference

+
∑
k∈K

Hkxk︸ ︷︷ ︸
intercell interference

+n (3)

with white Gaussian noise n ∼ CN (0, σ2I). We collect all
noise and interference terms in one vector z and obtain

y = Hx + z, (4)

where x is the transmitted signal, H is the channel matrix,
and z is the interference plus noise. The mobile has nT trans-
mit antennas and the base nR receive antennas. The channel
matrices and signals of the intercell and intracell interfering
users can have arbitrary number of transmit dimensions.

The coherence time of the channel is large enough for
coding over sufficiently many blocks. The interference dur-
ing one fixed channel realization depends on the statistics of
the transmitted signals of the interferers, and on their instan-
taneous channel realizations. Now, there are two reasons for
colored noise: the first one is that the interfering users choose
transmit covariance matrices which are not equal to identity.
This could happen, if they adapt to their channel states. The
other possibility is that the spatial structure of the channel
between the interferers and the receiver creates this colored
noise. Furthermore, the transmitter as well as the interferers
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use Gaussian codebooks in order to achieve capacity. There-
fore, we assume that the interference plus noise is complex
Gaussian distributed with covariancematrixZ. Furthermore,
the zero-mean complex Gaussian distribution is the worst-
case noise distribution under a variance constraint. There-
fore, wemodel the interference plus noise as zero-mean com-
plex Gaussian distributed with covariance matrix Z, that is,
z ∼ CN (0,Z).

The optimum input distribution which maximizes the
capacity of the channel in (4) is the zero-mean complex
Gaussian distribution, too, that is, x ∼ CN (0,Q). The trans-
mit covariance matrix is given by Q = E(xxH). The mutual
information of the channel in (4) is [1]

C(Q,Z) = log
det
(
Z +HQHH

)
det(Z)

. (5)

We assume that the sum transmit power is constrained to P,
that is, tr(Q) ≤ P.

2.2. Noise scenarios

In the following, we will need the eigenvalue decomposition
of the transmit, noise, and channel covariance matrices. We
define Z = UZΛZUH

Z , Q = UQΛQUH
Q , HHH = UHΛ

1
HU

H
H ,

and HHH = VHΛ
2
HV

H
H . To avoid confusion with the dimen-

sion of Λ1
H and Λ2

H , we will use the diagonal matrix ΛH of
dimension min(nR,nT) with the positive-ordered eigenval-
ues on the diagonal.2 The singular value decomposition of
the channel matrixH is given byH = UHΛ

1/2
H VH

H .
In all scenarios, the transmit power is constrained to P,

that is, tr(Q) ≤ P. The spatial signature of the interfering
users has a direct impact on the noise plus interference co-
variance matrix Z. The eigenvectors correspond with the di-
rections of the interfering signals and the eigenvalues corre-
spond with the average powers which depend on the distance
between interferer and receiver.

The following three scenarios are studied.

(1) Trace constraint. The trace of the noise covariance ma-
trix is a constraint to nRσ2N , that is,

tr(Z) ≤ σ2NnR. (6)

In this scenario, the sum noise power which arrives at
the base station is kept fixed. The noise has no addi-
tional constraints. This model corresponds to a sce-
nario in which the intercell and intracell interference
dominates. The noise has the fewest constraints in
comparison to other scenarios.

(2) Fixed eigenvalues. The eigenvalues of the noise covari-
ance matrix are fixed. The diagonal matrix

ΛZ = diag
(
λ1(Z), . . . , λm(Z)

)
(7)

is fixed.

2The eigenvalues in the diagonal matrix ΛH can be ordered without loss
of generality, since the resulting matrix depends only on the tuples of the
eigenvalues and eigenvectors and not on their order.

Here, the average power (eigenvalues of noise covari-
ance matrix ΛZ) is fixed, while the dominant direc-
tions of the noise (eigenvectors of the noise covariance
matrix U) vary. This constraint leads to the worst-case
noise directions.

(3) Diagonal constraint. The diagonal of the noise covari-
ance matrix is constraint to be less or equal to some
constant σ2N , that is,

diag(Z) = [σ2N , . . . , σ2N]. (8)

In this scenario, we fix the noise power at each receive
antenna at the base station because of the equal noise
power of the receivers. The color in the noise is created
by the intracell and intercell interference. The free pa-
rameter is the correlation of the noise. This scenario
provides the worst-case colored noise. In addition to
this, this scenario is interesting from an information
theoretic point of view, since this noise constraint is
used to compute the upper bound on the achievable
rate of a MIMOmultiuser system [10].

2.3. Preliminaries

In this work, many min-max expressions occur. In order to
decide whether the min-max expressions satisfy the saddle-
point property

min
x∈X

max
y∈Y

f (x, y) = max
y∈Y

min
x∈X

f (x, y), (9)

we use [20, Theorem 1]. One result in [20, Theorem 1] states
that (9) is fulfilled if f is convex on X and concave on Y and
if the sets X and Y are convex, too.

The capacity C(Q,Z) in (5) is convex with respect to Z
[8, Lemma II.3] and concave with respect toQ [21, Theorem
1]. The set of all possible transmit covariance matrices Q is
obviously convex. The set of admissible noise covariance ma-
trices Z in Scenario I and Scenario III is convex. As a result,
the min-max problem for Scenario I and Scenario III fulfill
the saddle-point property. Only for Scenario II, we have to
explicitly compute the min-max and max-min value in order
to show that they are equal.

In order to derive upper and lower bounds for functions
like det(A + B), the following theorem is helpful [22].

Theorem 1 (Fiedler 1971). For positive semidefinite matrices
A and B with eigenvalues α1 ≥ α2 ≥ · · · ≥ αn and β1 ≥ β2 ≥
· · · ≥ βn, it holds that

n∏
i=1

(
αi + βi

) ≤ det(A + B) ≤
n∏
i=1

(
αi + βn+1−i

)
. (10)

Theorem 1 makes two statements. We keep the matrix A
and its eigenvalue decomposition A = UAΛAUH

A fixed and let
the eigenvalue decomposition ofB be given byB = UBΛBUH

B .
The first statement in Theorem 1 is that the minimum and
maximum of det(A+B) is achieved by a specific choice of the
eigenvectors inUB:UB = P(π)UA with a permutation matrix
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x H +

n

y

∼ CN (0,Q)

∼ CN (0,Z)

= x H + y

n
∼ CN (0, P

nT
I)

∼ CN (0, nRσ
2
n

nT
I)

Figure 2: Worst-case noise with trace constraint: vector MIMO
channel CI and corresponding diagonalized orthogonal channels
CD
I .

P(π) and a permutation π. Therefore, the first statement in
Theorem 1 is

min
π

n∏
i=1

(
αi + βπi) ≤ det(A + B) ≤ max

π

n∏
i=1

(
αi + βπi

)
. (11)

The second statement in Theorem 1 specifies the minimum
and maximum permutation π in (11). Using the result from
[23, Proposition 3.E.1] that the product of logarithmically
concave functions is Schur-concave, it follows that the min-
imum is attained for equally sorted αi and βi and the maxi-
mum is attained for oppositional sorted αi and βn−i+1.

3. WORST-CASE NOISEWITH TRACE CONSTRAINT

In this section, the worst-case noise with the trace constraint
from scenario I is characterized. The optimization problem
for scenario I is given by

CI = min
tr(Z)≤σ2NnR

max
tr(Q)≤P

log
det
(
Z +HQHH

)
detZ

. (12)

The problem in (12) fulfills the saddle point properties [20].
Therefore, we can switch the min-max problem into max-
min, that is,

min
tr(Z)≤σ2NnR

max
tr(Q)≤P

C(Q,Z) = max
tr(Q)≤P

min
tr(Z)≤σ2NnR

C(Q,Z). (13)

We define the following optimization problem:

CD
I = min

ΛZ�0
tr(ΛZ )≤nRσ2N

max
ΛQ�0

tr(ΛQ)≤P
log

det
(
ΛZ +ΛHΛQ

)
detΛZ

(14)

with noise eigenvalues ΛZ = diag[λ1(Z), . . . , λnR(Z)] ordered
in decreasing order, that is, λ1(Z) ≥ λ2(Z) ≥ · · · ≥ λnR(Z).
The problem in (14) fulfilled the saddle point property, too.
Therefore, the minimization and the maximization in (14)
can be switched.

We describe our first result. The vector MIMO channel
with perfect CSI at the transmitter transforms into a MIMO
channel without CSI and white Gaussian noise.

In Figure 2, the correspondence is shown between the
closed-loop MIMO system (transmit covariance matrix Q)
with worst-case noise (noise covariance matrix Z) with trace
constraint and the open-loop MIMO system (transmit co-
variance matrix I) with white noise. Let m denote the min-
imum of the number of transmit and receive antennas, that
is,m = min(nT ,nR).

The following theorem recapitulates this correspon-
dence.

Theorem 2. The saddle point of the minimax problem CI and
CD
I equals and is given by

CI = CD
I =

m∑
k=1

log

(
1 +

λi(H)λ∗i (Q)
λ∗i (Z)

)

=
m∑
k=1

log
(
1 + ρλi(H)

)
= log det

(
I + ρHHH

)
= log det

(
I +

P

σ2nnR
HHH

)
.

(15)

The capacity in (15) equals the capacity of an open-loopMIMO
system, that is, without CSI at the transmitter, without inter-
ference, that is, with white uncorrelated noise with an effective
SNR ρ = P/(nRσ2N ).

Proof. The proof consists of two parts. In the first part, we
show that the capacity in (12) and the capacity in (14) are
equal.

Lemma 1. The capacity CI in (12) and the capacity CD
I in (14)

are equal for fixed channel matrixH, that is, CI = CD
I .

The proof of Lemma 1 is given in Appendix A.

Remark 1. For fixed noise covariance matrix eigenvalues and
channel eigenvalues, the optimum transmit covariance ma-
trix eigenvalues are given by the waterfilling solution. For
fixed channel eigenvalues and transmit covariance matrix
eigenvalues, the noise eigenvalues which minimize CD

I can be
easily found. Let ν denote the rank of the transmit covariance
matrix Q, that is, λ1(Q) ≥ · · · ≥ λν(Q) > λν+1(Q) = · · · =
λm(Q) = 0. We start with the Lagrangian of the minimiza-
tion problem,

L
(
Λ̂Z ,µ

) = ν∑
i=1

log

(
1 +

λi(H)λi(Q)
λi(Z)

)

+ µ

( ν∑
l=1

λl(Z)− nRσ
2
N

)
+

ν∑
k=1

ξkλk(Z).

(16)

The Lagrangian multiplier ξk which ensure that the eigen-
values of the noise covariance matrix Z are greater than or
equal to zero, are all equal to zero, because λk(Z) > 0 for all
1 ≤ k ≤ ν. Otherwise, the mutual information would be in-
finity. Since the optimization problem is convex with respect
to the noise eigenvalues, we have the necessary and sufficient
Karush-Kuhn-Tucker (KKT) condition from (16),

∂L
(
Λ̂Z ,µ

)
∂λi(Z)

=− λi(H)λi(Q)
λi(Z)2

(
1 + λi(H)λi(Q)/λi(Z)

) + µ=0. (17)
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We solve (17) for λi(Z) and obtain

λ∗i (Z) =
λi(H)λi(Q)

2

√1 +
4

λi(H)λi(Q)µ
− 1

. (18)

The Lagrangian multiplier µ has to be chosen so that∑nR
i=1 λ

∗
i (Z) = nσ2N .

In the second part of the proof, the worst-case noise co-
variance eigenvalues are further characterized. This is done
using the KKT conditions for optimality of Z and Q in the
following way. For fixed noise covariance matrix Z, the opti-
mal transmit covariance matrix Q∗ is characterized by the
corresponding KKT conditions. For fixed transmit covari-
ance matrix Q, the worst-case noise covariance matrix Z∗

is characterized by the corresponding KKT conditions. The
pair of covariance matrices (Q∗,Z∗) is saddle point if and
only if for fixed noise covariance matrix Z∗, the KKT condi-
tions are fulfilled by transmit covariance matrix Q∗ and the
other way round, if for fixed transmit covariance matrix Q∗,
the KKT conditions are fulfilled by the noise covariance ma-
trix Z∗. This approach results in the following Lemma 2.

Lemma 2. The worst-case noise eigenvalues in (18) corre-
spond to the optimal transmit covariance matrix eigenvalues
which are given by the water-filling solution. Furthermore, the
optimum transmit covariance matrix eigenvalues with SNR
ρ = P/(nRσ2N ) are given by

λ∗i (Q) = P ·
(

ρλi(H)/
(
1 + ρλi(H)

)∑ν
k=1
(
ρλk(H)

)
/
(
1 + ρλk(H)

)). (19)

The rank of the channel matrix H is denoted by ν. The worst-
case noise eigenvalues are then given by

λ∗i (Z) =
1
ρ
λ∗i (Q). (20)

This choice of transmit covariance matrix eigenvalues and noise
covariance matrix eigenvalues fulfill the optimality conditions
for the minimax problem.

The proof of Lemma 2 is given in Appendix B. Lemma 1
and Lemma 2 complete the proof.

Remark 2. The optimal transmit strategy can be further
characterized. For high SNR values, we obtain from (19)

lim
σ2N→0

λ∗i (Q) =
P

m
(21)

as long as the channel matrix H has full rank m. For small
SNR values, we obtain from (19)

lim
σ2N→∞

λ∗i (Q) = P · λi(H)∑ν
k=1 λk(H)

. (22)

In both cases, the rank of the transmit covariance matrix Q
is given by ν = m as long as the channel has full rank. This
characterization for high and low SNR values is illustrated in
Section 6.3.

x H +

n

y

∼ CN (0,Q)

∼ CN (0,Z)

=
x1 λ1(H) + y1

λ1(Z)
...

...

xK λK (H) + yn

λnR (Z)

Figure 3: Worst-case noise directions: vector MIMO channel CII

and corresponding diagonalized orthogonal channels CD
II .

4. WORST-CASE NOISE DIRECTIONS

We assume that the noise eigenvalues are fixed and ordered,
that is, λ1(Z) ≥ λ2(Z) ≥ · · · ≥ λnR(Z). Here, we study the
impact of the unitary matrix UZ . We write the set of unitary
nR×nR matrices asU(nR). We define the optimization prob-
lem as

CII = min
W∈U(nR)

max
tr(Q)≤P

log
det
(
WΛZWH +HQHH)
det
(
WΛZWH

) . (23)

Furthermore, we define

CD
II = max∑nR

i=1 λi(Q)≤P

nR∑
i=1

log

(
1 +

λi(H)λi(Q)
λi(Z)

)
. (24)

Obviously, the solution in (24) is the waterfilling solution.
The result in this section is that CII and CD

II are equal.
In Figure 3, the correspondence between the closed-loop
MIMO system with worst-case noise directions with noise
covariance matrix Z and the system with parallel SISO chan-
nels λ1(H), . . . , λnR(H) and noise variances λ1(Z), . . . , λnR(Z)
is shown.

In Scenario II, the worst-case directions deconstruct the
MIMO channel into m orthogonal channels. Furthermore,
the worst-case directions weight the noise covariance matrix
eigenvalues in a way that the largest noise eigenvalues disturb
the best channels. The capacity CD

II in (24) has the nice prop-
erty that it can be easily computed.

The worst-case noise unitary matrix is given by

Umin
Z = UH. (25)

The best case noise unitary matrix (which achieves the upper
bound in Theorem 1) is the permutation matrix times UH

which inverts the order of the noise eigenvalues.
We collect this result in the following theorem that states

that the capacities in (23) and (24) are equal.

Theorem 3. The capacity CII in (23) and the capacity CD
II in

(24) are equal. The worst-case noise directions corresponds to
the left eigenvectors of the channel matrixH.
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Proof. First, we show that CII ≤ CD
II . We choose Ŵ = VH . m

is again defined asm = min(nT ,nR). Then, it follows that

CII ≤ max
tr(Q)≤P

log
det
(
ŴΛZŴH +VHΛ

1/2
H QΛ1/2

H VH
H

)
det
(
ŴΛZŴH

)
= max

tr(ΛQ)≤P

m∑
i=1

log

(
1 +

λi(H)λi(Q)
λi(Z)

)
= CD

II .

(26)

Then, applying the Theorem 1 again, we show that CII ≥ CD
II .

We have

CII ≥ max
tr(Q)≤P

nR∑
i=1

log

(
1 +

λi
(
Λ1/2
H QΛ1/2

H

)
λi(Z)

)

= max
tr(ΛQ)≤P

m∑
i=1

log

(
1 +

λi(H)λi(Q)
λi(Z)

)
= CD

II .

(27)

From (26) and (27) follows CII = CD
II . This completes the

proof.

In addition to this, we will show in the following theo-
rem that the optimization problem in (23) fulfills the saddle
point property even though the set of unitary nR × nR ma-
trices is not convex. The saddle point property is interesting
for the game-theoretic interpretation of the minimax prob-
lem in (23). The order in which the two players, namely, the
noise player and the transmit player, draw has no impact on
the outcome.

Theorem 4. The capacity

C(W,Q) = log
(
det
(
Z +HQHH

))
detZ

(28)

has the saddle point property, that is,

min
W∈U(nR)

max
tr(Q)≤P

C(W,Q) = max
tr(Q)≤P

min
W∈U(nR)

C(W,Q). (29)

Proof. We know from the last theorem that

min
W∈U(nR)

log
det
(
WΛZWH +VHΛ

1/2
H QΛ1/2

H VH
H

)
detWΛZWH

≥
nR∑
l=1

log

(
1 +

λl(H)λl(Q)
λl(Z)

)
.

(30)

We take the maximum over the transmit covariance matrix
Q on the left-hand side (LHS) and right-hand side (RHS) of
(30) and obtain with

Φ =WΛZWH +VHΛ
1/2
H QΛ1/2

H VH
H (31)

the following inequality:

max
tr(Q)≤P

min
W∈U(nR)

log
det(Φ)

detWΛZWH

≥ max
tr(Q)≤P

nR∑
l=1

log

(
1 +

λl(H)λl(Q)
λl(Z)

)
.

(32)

But the RHS of (32) is the minimax of C(W,Q) and we have,
therefore,

max
tr(Q)≤P

min
W∈U(nR)

C(W,Q)

≥ max
tr(Q)≤P

nR∑
l=1

log

(
1 +

λl(H)λl(Q)
λl(Z)

)
= min

W∈U(nR)
max
tr(Q)≤P

C(W,Q).

(33)

This completes the proof.

Remark 3. In comparison with the worst-case noise system
with trace constraint, the closed-loop MIMO system with
worst-case noise directions looses again the transmitter co-
operation, but still power allocation can be applied. The op-
timal power allocation is waterfilling with respect to the ef-
fective channel matrix eigenvalues λi(H)/λi(Z).

In addition to this, for fixed noise covariance matrix
eigenvalues, we can ask the other way round: what are the
best-case noise directions? By applying Theorem 1 again, we
have

max
W∈U(nR)

log
det
(
WΛZWH +HQHH)
det
(
WΛZWH

)
=

m∑
i=1

log

(
1 +

λi(H)λi(Q)
λm−i+1(Z)

)
.

(34)

The difference between the worst-case noise directions and
the best case noise directions depends on the noise and chan-
nel eigenvalues λi(H) and λi(Z). In the next section, we illus-
trate the worst-case noise direction with an example.

4.1. Example of worst-case noise direction

In the following, we give an example of the worst-case noise
direction. We assume two transmit and two receive antennas
and fix the channel matrix

H =
(√

2 0
0 1

)
(35)

and noise eigenvalues with λ1(Z) = 1.5σ2N and λ2(Z) =
0.5σ2N . We parameterize the unitary matrixW by

W =
(

cos(t) sin(t)
− sin(t) cos(t)

)
. (36)

The effective channel H̃ is given by

H̃ = Λ−1/2Z WH(t)H. (37)

The eigenvalues of H̃H̃H in dependence of t can be com-
puted in closed form. It can be shown that the maximum of
the largest efficient channel eigenvalue occurs at t = 0 and
is equal to λ1(H)/λ2(Z). The minimum of the largest effi-
cient channel matrix eigenvalue occurs at t = π/2 and equals
λ1(H)/λ1(Z). Analogously, we obtain for the smallest efficient



280 EURASIP Journal on Wireless Communications and Networking

x H +

n

y

∼ CN (0,Q)

∼ CN (0,Z)

=
x1 h1

...

xn hn

+

n

∼ CN (0, I)

y

Figure 4: Worst-case colored noise: vector MIMO channel CIII and
corresponding SIMOMAC channels CD

III.

channel matrix eigenvalue the maximum at t = π/2 with
λ2(H)/λ2(Z) and the minimum at t = 0 with λ2(H)/λ1(Z).
The instantaneous mutual information can be computed in
closed form as a function of t and it can be shown that
the minimum mutual information occurs at t = 0 and the
maximum at t = π/2. Therefore, we obtain for the worst-
case noise directions an effective channel with eigenvalues
λ1(H̃) = 4/3 and λ2(H̃) = 2. At 10 dB, waterfilling pro-
vides the optimal power allocation λ1(Q) = 0.5125 and
λ2(Q) = 0.4875 which yields a capacity of 6.398 (bit/s/Hz).

5. WORST-CASE COLORED NOISE

In this scenario, the diagonal of the noise covariancematrix is
equal to σ2N . We define the set of all noise covariance matrices
with constant σ2N entries on the diagonal as

Z = {Z : Z � 0, diag(Z) = [σ2N · · · σ2N]}. (38)

We define the capacity of the minimax problem as

CIII = min
Z∈Z

max
tr(Q)≤P

log
det
(
Z +HQHH

)
detZ

. (39)

We define the capacity of the SIMOMAC as

CD
III = max∑n

l=1 pl≤P
log det

(
I +

1
σ2N

nT∑
l=1

plhlhHl

)
. (40)

The result of this section is that CIII and CD
III are equal.

We first describe the result. In Figure 4, the correspondence
between the closed-loop MIMO system with worst-case col-
ored noise and the SIMOMAC with white noise is shown. In
Scenario III, there is cooperation at the transmit side only in
terms of power control.

In Scenario III, we assume for convenience that nT = nR.
The worst-case color of the noise reduces the achievable ca-
pacity of a MIMO system with nT cooperating transmit an-
tennas to nT users who perform only power control. The
achievable mutual information CIII for the MIMO channel
with worst-case colored noise equals the sum capacity of the
multiuser SIMOMAC. This fact has been used in [10] to de-
rive an upper bound on the capacity region of the BC.

First, we will need the following lemma which explicitly
states the reciprocity between uplink and downlink transmis-
sion.

Lemma 3. The value of the following two optimization prob-
lems is equal:

max
tr(Q)≤P

log det
(
I + ρHQHH

)
= max

tr(S)≤P
log det

(
I + ρHHSH

)
.

(41)

Proof. The value of the two optimization problems in (41)
does not depend on the left or right eigenvectors of H, be-
cause log det(I + UAUH) = log det(I + A) for unitary U and
because tr(UQUH) = tr(Q). Denote the rank of the nR × nT
matrixH by ν. Furthermore, the value of the log det(I+X) at
point X = 0 is equal to zero, that is, f (0) = 0. As a result, the
LHS of (41) is

max
tr(Q)≤P

log det
(
I +HQHH

)
= max∑m

k=1 pk≤P

m∑
k=1

log
(
1 + λk(H)pk

)

= max∑ν
k=1 pk≤P

ν∑
k=1

log
(
1 + λk(H)pk

)
.

(42)

The RHS of (41) is

max
tr(S)≤P

log det
(
I +HHSH

)
= max∑

k=1 sk≤P

n∑
k=1

log
(
1 + λk(H)sk

)

= max∑ν
k=1 sk≤P

ν∑
k=1

log
(
1 + λk(H)sk

)
(43)

with eigenvalues s1, . . . , sn of S. Equation (42) is equal to (43).
This completes the proof.

In the following theorem, we will show that the capacity
CIII in (39) is equal to the capacity CD

III in (40).

Theorem 5. The capacity of the single user MIMO system with
worst-case colored noise and perfect CSI at the transmitter as
well as the receiver CIII is equal to the capacity of a multiuser
SIMOMAC CD

III with white noise.

Proof. At first, for the capacity CIII, it holds that

CIII = min
Z∈Z

max
tr(Q)≤P

log
det
(
Z +HQHH

)
detZ

(44a)

= min
Z∈Z

max
tr(Q)≤P

log det
(
I + Z−1/2HQHHZ−1/2

)
(44b)

= min
Z∈Z

max
tr(S)≤P

log det
(
I +HHZ−1/2SZ−1/2H

)
(44c)

= min
Z∈Z

max
tr(SZ)≤P

log det
(
I +HHSH

)
. (44d)

Step (44a) follows from the definition, in step (44b) the fact
used is that Z is full rank because of its constraint. In step
(44c), the point-to-point reciprocity in Lemma 3 is used and
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step (44d) is obvious. S is the transmit covariance matrix of
the reciproc channel. We define the capacity in step (44d) as
a function of the noise covariance matrix by

CIIIa(Z) = max
S�0, tr(SZ)≤P

log det
(
I +HHSH

)
. (45)

It is obvious that the feasible input to the MAC capac-
ity in CD

III in (40) fulfills the trace constraint in (45), be-
cause Zii ≤ σ2N . Therefore, we have C

D
III ≤ CIII ≤ CIIIa(Z).

Now, we find a Z∗ with diagonal elements ≤ σ2N such that
CIIIa(Z∗) = CD

III, that is, a Z∗ such that the optimal input
S∗ = diag(p1, . . . , pn) for the MAC is also optimal for the
CIII in (39). The Lagrangian for the optimization in (45) is
given by

L(S, λ) = log det
(
I +HHSH

)− λ
(
tr(SZ)− P

)
(46)

with Lagrangian multiplier λ for the power constraint. A suf-
ficient condition for optimality of some S∗ is given by the
KKT conditions:

tr(SZ) ≤ P,

∂L(S, λ)
∂S

∣∣∣∣
S=S∗

= 0
(47)

for some λ > 0. This condition is obviously satisfied by

Z∗ = 1
λ
H
(
I +HHS∗H

)−1
HH. (48)

To satisfy the trace constraint, λ is derived from the KKT con-
dition for the MAC channel in (40) as

hi
(
I +HHS∗H

)−1
hHi = λ (49)

for all pi > 0. The λ from (49) in (48) ensures that the trace
constraint tr(ZS) ≤ P is satisfied. This completes the proof.

Remark 4. Our proof of Theorem 5 goes in similar lines like
the derivation in [24, Section III.C].

The closed-loop MIMO system with worst-case colored
noise looses the cooperation between the transmit antennas.
However, power allocation is still possible. Therefore, we ar-
rive at the SIMO MAC with power allocation. This decom-
position of the MIMO system with worst-case colored noise
into the SIMO MAC with white noise has been used in the
literature in various contexts. The Sato bound in [10] is an
upper bound for the capacity region of a BC. The region is
upper bounded by the capacity of the cooperative (at trans-
mit side) single-user system with worst-case colored noise.
The sum capacity of the multiuser system and the capacity of
the single user systems are equal. This way Theorem 5 can be
proven, too [11]. The worst-case capacity of Gaussian vector
BC is further analyzed in [9].

5.1. Example for worst-case colored noise

In the following, we give two examples for the computation
of the worst-case colored noise saddle point by solving the
simple SIMOMAC problem. In the first example, both users
are supported. In the second example, only one mobile user
is supported.

5.1.1. Example A

Let the channel matrix be given by

H =
(
0.1 0.5
0.8 0.2

)
(50)

with transmit power constraint P = 10 and noise power σ2N =
1. We apply the following steps.

(1) We compute the optimal power allocation for the
SIMOMAC by MAXDET [25]

S∗ = diag
(
[3.5457, 6.4543]

)
. (51)

The Lagrangian multiplier is λ1 = λ2 = 0.124.
(2) We compute the worst-case colored noise in (48) and

the corresponding KKT condition yields

Z∗ =
(

1 0.151
0.151 1

)
. (52)

(3) Waterfilling with respect to the effective channel pro-
vides the optimal MIMO transmission strategy:

Q∗ =
(
6.2675 1.0151
1.0151 3.7325

)
. (53)

Next, we test this result by computing the sum capacity of
the SIMO MAC with S∗ and by computing the capacity of
the MIMO channel with worst-case colored noise Z∗ and
transmit strategy Q∗:

CD
III = log det

(
I +HHS∗H

) = 3.2653,

CIII = log det
(
Z∗ +HQ∗HH

)− log detZ = 3.2653.
(54)

We have

CD
III = CIII. (55)

5.1.2. Example B

We consider the same channel as in example A and the same
noise variance. We choose the transmit power P = 1.

(1) The optimal power allocation for the SIMO MAC is
given by

S∗ = diag
(
[0, 1]

)
(56)

and the Lagrangian multiplier is λ1 = 0.2407 <
0.4048 = λ2.
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(2) The corresponding worst-case colored noise for the
single-user MIMO system is

Z∗ =
(
1(0.5946) 0.2647

0.2647 1

)
. (57)

Here, the entry (1, 1) inZ∗ was filled up from 0.5946 to
1. This does not change the optimal Q∗ nor the value
of the minmax problem (see [19]).

(3) The waterfilling solution yields

Q∗ =
(
0.9412 0.2353

0.2353 0.0588

)
. (58)

As in the previous example, we have

CD
III = 0.7485 = CIII. (59)

6. INTERPRETATION, ILLUSTRATION,
ANDDISCUSSION

In all three scenarios, it is shown that the achievable capac-
ity with optimal transmit covariance matrix under worst-
case noise (with different constraints) equals the achievable
capacity without transmit cooperation and i.i.d. noise with
scaled identity covariance matrix. The differences and com-
monness between CSI and cooperation are further discussed
in the following.

6.1. Discussion of results

We have considered a scenario in which the transmitter has
perfect CSI H and further knowledge of the interference co-
variance matrix Z. Obviously, both the capacity Cx and the
optimal transmit covariance matrix Q are a function of the
noise covariance matrix Z. In all three noise scenarios, we
have searched for the global minimum of Cx with respect to
Z. From a multiuser point of view, this corresponds to the
question “what is the worst-case interference that limits the
capacity of my link?”. Closely related are the questions “how
much information rate can be guaranteed even in worst-case
noise?” and “what is lost due to worst-case noise?”. In general
MIMO systems, the transmit antennas can cooperate, that is,
some kind of beamforming can be applied. A necessary con-
dition for cooperation is some kind of CSI at the transmit
side. This means that there are different stages of transmit
operation. Without CSI, there is no cooperation.

In order to summarize the results and answer of the three
questions from the last paragraph, the following list is pro-
posed.

(i) Worst-case noise with trace constraint. Regarding the
channel capacity, a MIMO system with perfect CSI
about H and about interference Z at both sides of the
link equals a MIMO system without CSI at the trans-
mitter and with slightly amplified white noise. Due
to worst-case noise, the transmitter loses its CSI and
hence its cooperation.

(ii) Worst-case noise directions. In this scenario, the MIMO
system with perfect CSI aboutH and Z transforms un-
der worst-case noise directions with fixed noise covari-
ance matrix eigenvalues to a system with parallel fad-
ing channels with effective channel gains λi(H)/λi(Z).
At the transmitter, CSI and cooperation were available
and necessary to diagonalize the channel. The last op-
timization step is power allocation according to water-
filling against the effective channel.

(iii) Worst-case colored noise. Regarding the channel capac-
ity, a MIMO system with perfect CSI about H and Z
under worst-case colored noise equals a SIMO MAC
with CSI at the transmitters and white noise. In this
scenario, the CSI is still available at the transmit an-
tenna. In exchange, the cooperation at the transmit
side is lost.

6.2. Comparison of worst-case noise capacities

In Scenario I, the worst-case noise has the same directions
as in Scenario II. Additionally, the eigenvalues of the noise
covariance matrix are chosen to minimize the mutual infor-
mation. The optimal noise covariance matrix eigenvalues are
explicitly given in (18). The minimax problem in (12) fulfills
the saddle point property. Therefore, we have, for all Q and
Z and with optimal pair (Q∗,Z∗),

F
(
Q,Z∗

) ≤ F
(
Q∗,Z∗

) ≤ F
(
Q∗,Z

)
. (60)

For fixed Z, the optimal Q is the waterfilling solution and
for fixed Q the noise covariance matrix which minimizes the
mutual information is given by (18). In general, we have, for
the eigenvectors of the optimal Q∗ and Z∗,

Q∗ = VHΛQ∗VH
H ,

Z∗ = UHΛZ∗UH
H.

(61)

In Scenario I, the set of admissible noise covariance matrices
is larger than in Scenario II. The additional choice of eigen-
value distribution reveals this. Therefore, the capacity CI is
smaller than or equal to CII.

The capacity CI is smaller than or equal to CIII. This fol-
lows from the fact that the set of feasible noise covariance
matrices in Scenario I and Scenario II is larger than the set of
feasible noise covariance matrices in Scenario III. We obtain

CI ≤ CII,

CI ≤ CIII.
(62)

Unfortunately, we cannot compare the capacitiesCII andCIII,
because the set of noise covariance matrices in Scenario II is
not a subset of the set in Scenario III and vice versa.

6.3. Illustration of worst-case noise
with trace constraint

In Figure 5, the worst-case noise covariance matrix eigen-
value λ1(Z) is shown over the SNR and the channel matrix
eigenvalue λ1(H). The noise, channel, and transmit covari-
ance matrices are sum-normalized, that is, λ1(Z)+λ2(Z) = 1,
λ1(H) + λ2(H) = 1, and λ1(Q) + λ2(Q) = 1, respectively.
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Figure 5: MIMO 2 × 2. Normalized worst-case noise covariance
matrix eigenvalue λ1(Z) and normalized optimal transmit covari-
ance matrix eigenvalue λ1(Q) over SNR (dB) and channel matrix
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Figure 6: Mutual information using λ1(Q) and λ1(Z) from Figure 5
over SNR (dB) and channel matrix eigenvalue λ1(H).

In Figure 5, we observe that for small SNR values the
worst-case noise eigenvalues correspond to the channel ma-
trix eigenvalues as predicted by (22). For high SNR val-
ues, the worst-case noise eigenvalues have equal power. In
Figure 6, we show the mutual information which is achieved
by λ1(Z) and λ1(Q) from Figure 5.

7. CONCLUSION

In this work, the instantaneous capacity of a MIMO sys-
tem with worst-case noise was studied. The three different
noise scenarios lead to different noise constraints and dif-
ferent worst-case noise capacities. We studied a trace con-
straint, fixed noise eigenvalues but free noise directions, and
fixed diagonal entries in noise covariance matrix Z but free
color of noise. In all three scenarios, the MIMO system lost
its ability to cooperate at the transmitter side. In the first
case with worst-case noise and trace constraint, the CSI at
the transmitter dropped away. In scenario II and scenario III,

the eigendirections of the transmit covariance matrices were
canceled by the worst-case noise direction or color and only
power allocation could be performed at the transmitter.

APPENDICES

A. PROOF OF LEMMA 1

At first, we show that CI ≤ CD
I . We have

max
tr(Q)≤P

log
det
(
Z +HQHH)
detZ

= max
tr(Q)≤P

log
det
(
UH

HZUH +Λ1/2
H VH

HQVHΛ
1/2
H

)
detUH

HZUH

= max
tr(VHQVH

H )≤P
log

det
(
UH

HZUH +Λ1/2
H QΛ1/2

H

)
detUH

HZUH

= max
tr(Q)≤P

log
det
(
UH

HZUH +Λ1/2
H QΛ1/2

H

)
detUH

HZUH
.

(A.1)

Now, we choose Ẑ = UHΛZUH
H fixed, let the eigenvalues vary,

and obtain an upper bound on CI:

CI= min
tr(Z)≤σ2Nn

max
tr(Q)≤P

log
det
(
Z +HQHH)
detZ

≤ min∑n
k=1 λk(Z)≤nσ2

max
tr(Q)≤P

log
det
(
ΛZ +Λ1/2

H QΛ1/2
H

)
detΛZ

= min∑n
k=1 λk(Z)≤nσ2

max
tr(ΛQ)≤P

log
det
(
ΛZ +ΛHΛQ

)
detΛZ

=CD
I .

(A.2)

The last equality in (A.2) follows from the fact that the opti-
mal eigenvectors ofQ are equal to identity. The LHS of (A.2)
does not depend onΛZ . Next, we show using Theorem 1 that
CI ≥ CD

I . With Theorem 1, we have

log
det
(
Z +HQHH)
detZ

≥
m∑
i=1

log
λi(Z) + λi

(
HQHH)

λi(Z)
.

(A.3)

The maximum over Q of the term in (A.3) is greater than or
equal to the term with the choice of UQ = UH

H , that is,

max
tr(Q)≤P

log
det
(
Z +HQHH)
detZ

≥
m∑
i=1

log
λi(Z) + λi(H)λi(Q)

λi(Z)
.

(A.4)

Inequality (A.4) is valid for all Z. Therefore, we have

min
tr(Z)≤nRσ2N

max
tr(Q)≤P

log
det
(
Z +HQHH)
detZ

≥ min
tr(Z)≤nRσ2N

max
tr(Q)≤P

m∑
i=1

log
λi(Z) + λi(H)λi(Q)

λi(Z)
.

(A.5)
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From (A.5), it follows that

CI ≥ CD
I . (A.6)

From (A.2) and (A.6) follows CI = CD
I . This completes the

proof.

B. PROOF OF LEMMA 2

The proof of Lemma 2 can be described as follows. Choose
the eigenvalues of the noise covariance matrix to be equal
to the weighted eigenvalues of the transmit covariance ma-
trix, that is, λi(Q) = ρλi(Z), and show that the optimality
conditions for the minimization with respect to Z is fulfilled.
Choose the eigenvalues of the transmit covariance matrix to
be equal to the weighted eigenvalues of the noise covariance
matrix and show that the optimality conditions for the max-
imization with respect to Q are fulfilled.

We denote the optimal transmit covariance matrix eigen-
values by λ∗i (Q) and the worst-case noise covariance matrix
eigenvalues by λ∗i (Z). The waterfilling solution of the trans-
mit covariance matrix eigenvalues is given for all λ∗i (Q) > 0
as

λ∗i (Q) = ξ − λ∗i (Z)
λi(H)

(B.1)

with ξ > 0. We show that the choice λ∗i (Z) = (1/ρ)λ∗i (Q)
fulfills both optimality conditions (18) and (B.1), simulta-
neously. This result is derived by computing the Lagrangian
multiplier for (B.1) and (18) and showing that ξ = 1/µ. From
(18), we have for λ∗i (Q) = ρλ∗i (Z),

λ∗i (Z) =
1
2
ρλ∗i (Z)λi(H)

·
(√

1 +
4

ρλi(H)λ∗i (Z)µ
− 1

)
.

(B.2)

Solving (B.2) for µ yields

1
µ
= λ∗i (Z)

(
1

ρλi(H)
+ 1

)
. (B.3)

From (B.1), we have for λ∗i (Z) = (1/ρ)λ∗i (Q),

λ∗i (Q) = ξ − λ∗i (Q)
ρλi(H)

. (B.4)

Solving (B.4) for ξ gives

ξ = λ∗i (Q)

(
1

ρλi(H)
+ 1

)
= 1

µ
. (B.5)

Equation (B.5) connects the Lagrangian multiplier for the
transmit covariance matrix optimization in (B.1) and the
worst-case noise optimization in (18). This shows that
λ∗i (Q) = ρλ∗i (Z) solves (B.1) and (18).

The closed-form expression for λ∗i (Q) in (19) is easily
obtained from the power constraint:

m∑
k=1

λ∗i (Q) = P. (B.6)
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