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Most of the performance studies devoted to the analysis of multicarrier systems in the presence of nonlinear distortion assume that
the multicarrier signal can be modeled as a random Gaussian process regardless of modulation format, guard interval duration,
and number of subcarriers. On the contrary, we present an analysis based on the discrete model of the multicarrier signal. It
is shown that the discrete model provides more accurate signal-to-distortion ratio and out-of-band spectrum prediction if the
number of subcarriers is small. Only the effect of third-order nonlinearity is studied; however results can also be extended to the
fifth-order polynomial model. Simulation results are provided which confirm analytical derivations.
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1. INTRODUCTION

Multicarrier modulation (MCM) is a technique widely used
in communication systems [1]. Some of the most well-
known applications are wireless local area networks (WLAN)
[2], and terrestrial digital video broadcasting (DVB-T) [3]
using orthogonal frequency-division multiplexing (OFDM).
MCM has several advantages over single-carrier systems,
those being its spectral effectiveness and reduced complex-
ity implementation based on fast Fourier transform (FFT).
A disadvantage of MCM is its high sensitivity to amplifier
nonlinearity, which causes the out-of-band interference and
introduces symbol error rate (SER) degradation [4, 5, 6, 7, 8].

Recently, there were many studies dealing with MCM
analysis in the presence of nonlinear distortions [4, 5, 6, 7, 8].
Most of these studies are related to special models of nonlin-
ear device (e.g., soft envelope limiter (SEL) [7], Rapp solid
state power amplifier (SSPA) and Saleh traveling-wave tube
amplifier (TWTA) models [4, 7], Bessel series expansion
model [6, 8], etc.) and rely on assumption that the MCM
signal can be modeled as a complex Gaussian process.

One problem with these methods is that the special
model of nonlinear device requires expensive and time-
consuming experimental measurements to identify model
parameters. On the contrary, simple measures of nonlinear-
ity directly related to a low-order polynomial model, such as
third- and fifth-order intersect points, are usually available to
a system designer at the early stage of specification definition
or link budget analysis.

In [5], authors introduce simple analysis based on
the third-order polynomial model of amplitude modula-

tion/amplitude modulation (AM/AM) amplifier nonlinear-
ity. The results of [5] are simple easy-to-use expressions for
in-band signal-to-distortion ratio (SDR) evaluation. How-
ever, the analysis presented in [5] relies on several simplifying
assumptions:

(1) Gaussian assumption on input signal,
(2) assumption that the third-order intermodulation

products do not contribute to the useful signal at the
input of decision device,

(3) assumption that the in-band subchannels are equally
affected by nonlinearity,

(4) assumption that the nonlinear noise at the input of de-
cision device is Gaussian.

While assumptions (1) and (4) may be reasonable, if the
number of subcarriers is sufficiently large, assumptions (2)
and (3) are not valid even for systems with large num-
ber of subcarriers. As a consequence, analysis presented in
[5] does not show good agreement with simulation results.
Recently, several papers appeared dealing with polynomial
model of nonlinearity [9, 10] that are not based on simpli-
fying assumptions (2) and (3). The analysis carried out in
[10] is originally intended for code-division multiple access
(CDMA) signals, but it can also be extended (with some ef-
fort) to the MCM signals. However, [9, 10] still rely on Gaus-
sian assumption on input signal, which does not hold when
the number of subcarriers is small [11].

In this paper, we propose simple discrete model for
performance evaluation of MCM in low-order polynomial
nonlinearity. This model eliminates the need for Gaussian
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assumption on input signal, and as a result can be used for
SDR and out-of-band regrowth characterization when the
number of MCM subcarriers is arbitrary small. We also show
here that the asymptotical simplification leads to simple easy-
to-use analytical formulas, suitable for systems with large
number of subcarriers. Furthermore, it is expected that the
results of our analysis will be helpful for characterization of
non-Gaussian properties of the nonlinear distortion noise.
However, this topic requires additional study and is out of
scope of this paper.

It should be noted that the discrete model has already
been used in past for performance characterization of the
frequency-division multiple access (FDMA) satellite links
[12, 13]. However, previous studies [12, 13] only examine
FDMA intermodulation effects when the number of sub-
channels is large. Moreover, assumption made in [13] that
all intermodulation products are mutually uncorrelated and
contribute to a noise power is not valid for MCM systems
under consideration.

Recently, there was an attempt to apply the discrete
model to the analysis of nonlinearly distorted multicarrier
spread spectrum systems [14]. However, the analysis pre-
sented in [14] is only intended for binary modulation for-
mats and relies mostly on numerical computations, rather
than analytical treatment.

2. SYSTEMMODEL

In the MCM transmitter, information bits are first mapped
into baseband symbols {Sk} using phase shift keying (PSK)
or quadrature amplitudemodulation (QAM) signaling. Dur-
ing active symbol interval a block of N complex baseband
symbols is transformed by means of the inverse discrete
Fourier transform (DFT) and a digital-to-analog conversion
to the baseband MCM signal

z(t) =
N−1∑
k=0

g(t)Ske j2πk∆ f t, 0 < t < Ts, (1)

where g(t) is the signal pulse shape, N is the number of sub-
carriers, ∆ f is the separation between adjacent subcarriers,
and Ts is the active symbol interval.

The third-order memoryless nonlinearity can be de-
scribed by the Taylor series [15, page 13]

y(t) = a0 + a1x(t) + a2x
2(t) + a3x

3(t), (2)

where x(t) is the input passband signal, y(t) is the output
passband signal, and {an} are the Taylor series coefficients.
It is important to note that only the odd-order (e.g., third-
order) terms produce intermodulation components that are
located near central frequency of the multicarrier signal. The
even-order terms are filtered out in zonal filter and do not
influence system performance.

The nonlinearity of radio frequency circuits is often ex-
pressed in terms of the third-order intercept point (AIP3).
It can be shown [15, page 20] that AIP3 and parameters of

model (2) are related as

AIP3 =
√

4a1
3
∣∣a3∣∣ . (3)

In this study, we only consider the third-order model of non-
linearity, since the third-order nonlinearity is usually dom-
inated in a real system under small-signal condition [15].
However, the analysis presented here can also be extended
to the fifth-order polynomial model.

3. THEORETICAL BACKGROUND

Consider the output of a nonlinear amplifier given by (2).
The input signal x(t) can be expressed in terms of the base-
band MCM signal as

x(t) = ρ(t) cos
[
ω0t + ϕ(t)

] = Re
⌊
z(t)e jω0t

⌋
= 1

2

⌊
z(t)e jω0t + z∗(t)e− jω0t

⌋
.

(4)

In order to compute the third power of x(t) one can use bino-
mial expansion (see, e.g., [16, 17]). Combining (4) with am-
plifier model (2), and assuming that the components around
3ω0 frequency are filtered out in zonal filter, yields the ampli-
fier output signal [16]

y(t) = Re
[
a1z(t)e jω0t +

3
4
a3z

2(t)z∗(t)e jω0t
]
. (5)

After some manipulations and substituting (1) into (5), y(t)
can be expressed as (assuming for simplicity that the signal
pulse shape g(t) is rectangular)

y(t) = Re

[{
a1

N−1∑
k=0

Ske
j2πk∆ f t

+
3
4
a3

N−1∑
n1=0

N−1∑
n2=0

N−1∑
n3=0

Sn1Sn2S
∗
n3

× e j2π(n1+n2−n3)∆ f t

}
e jω0t

]
.

(6)

It is seen from (6) that the kth transmitted baseband symbol
after transformation in a nonlinear amplifier (S′k, k = −N +
1,−N + 2, . . . , 2N − 2) can be expressed as

S′k =




a1Sk +
3
4
a3

∑
n1+n2−n3=k

Sn1Sn2S
∗
n3 if 0 ≤ k < N ,

3
4
a3

∑
n1+n2−n3=k

Sn1Sn2S
∗
n3 if −N < k < 0,

or N≤k<2N−1,
(7)

where n1, n2, n3 can take any values in the range 0, 1, . . . ,N −
1, and k > N − 1 or k < 0 corresponds to the out-of-band
distortion components.



Performance of MCM in the Presence of Smooth Nonlinearity 337

It can be shown (see the appendix for details) that the
total number of intermodulation terms that correspond to
the frequency ω0+2πk∆ f (k = n1+n2−n3) can be expressed
as

M(total)
k =




(N + k)(N + k + 1)
2

if −N < k < 0,

N(N + 1)
2

+ k(N − k − 1) if 0 ≤ k < N ,

(2N − k − 1)(2N − k)
2

if N ≤ k < 2N − 1.

(8)

Now, it can be noted that the intermodulation terms can be
divided into three groups defined as follows.

(1) The first group includes the terms that satisfy the fol-
lowing conditions:

(
n1 + n2 − n3 = k

)
,

((
n1 = n3

)
or
(
n2 = n3

))
. (9)

(2) The second group includes the terms that satisfy the
following conditions:

(
n1 + n2 − n3 = k

)
,
(
n1 �= n3

)
,
(
n2 �= n3

)
,
(
n1 = n2

)
. (10)

(3) The terms in the third group satisfy the condition n1 +
n2 − n3 = k, but do not belong to the first or second
group.

It is easy to see that the terms in the first group produce
scaled replica of the symbol Sk, since Sn1Sn2S

∗
n3 = Sk|Sn3 |2 or

Sn1Sn2S
∗
n3 = Sk|Sn2|2. The number of terms in the first group

can be expressed as (see the appendix)

M(1)
k =


2N − 1 if 0 ≤ k < N ,

0 otherwise.
(11)

The terms in the second and the third groups are uncor-
related with the useful signal Sk and produce both in-band
and out-of-band distortions. However, the intermodulation
terms in the third group are coupled in coherent pairs, since
every term Sn1Sn2S

∗
n3 in (7) corresponds to identical term

Sn2Sn1S
∗
n3 , if n1 �= n2. On the other hand, each term in the

second group is unique. It is easier to calculate the number
of terms in the second group (see the appendix). It is shown
that

M(2)
k =




⌊
N + k + 1

2

⌋
if −N < k < 0,

N − 2
2

+
1− (−1)N

4
(−1)k if 0 ≤ k < N ,⌊

N − k

2

⌋
if N ≤ k ≤ 2N − 1,

(12)

where �x� means the largest integer not greater than x. Fi-
nally, the number of coherent pairs in the third group can be

expressed as

M(3)
k = M(total)

k −M(1)
k −M(2)

k

2
. (13)

Now, using discrete signal representation (7) and formulas
(8), (11), (12), and (13), we can calculate the SDR for each
subcarrier of theMCM signal, and evaluate the average emit-
ted power for every out-of-band subchannel (k < 0 and k >
N − 1).

4. MCM SIGNAL SPECTRUMAT THE OUTPUT
OF NONLINEAR AMPLIFIER

In order to calculate the power spectral density (PSD) of
the MCM signal at the output of a nonlinear amplifier
we first express the average signal power in kth subchan-
nel after nonlinear amplification, that is, we will find Pk =
E{|S′k|2}, where E(·) denotes expectation. Since intermodu-
lation terms in the first, second, and third groups are mutu-
ally uncorrelated we can perform averaging for every group
separately. However, terms in the first group produce scaled
replica of Sk, so they affect the power of useful signal. It was
mentioned above that any intermodulation term belonging
to the first group can be expressed as (3/4)a3Sn1Sn2S

∗
n3 =

(3/4)a3Sk|Sn3|2. Taking this fact into account and perform-
ing statistical averaging, we can easily obtain the useful signal
power

P(1)
k =

(
a1+

3
4
a3E

{|S|2}M(1)
k

)2
E
{|S|2}, k=0, 1, . . . ,N−1.

(14)

A second group term (n1 = n2) can be represented as
(3/4)a3Sn1Sn2S

∗
n3 = (3/4)a3(Sn1 )

2S∗n3 . Using this representa-
tion, the average power introduced by the terms in the sec-
ond group can be expressed as

P(2)
k =

(
3
4

)2
a23E

{|S|2}E{|S|4}M(2)
k ,

k = −N + 1,−N + 2, . . . , 2N − 2.

(15)

As it was mentioned previously, the terms in the third group
(n1 �= n2) are coupled in coherent pairs, thus the average
power introduced by the terms in the third group can be ex-
pressed as

P(3)
k =

(
3
2

)2
a23
(
E
{|S|2})3M(3)

k ,

k = −N + 1,−N + 2, . . . , 2N − 2.

(16)

Then, it is straightforward to represent Pk as

Pk=P(1)
k +P(2)

k +P(3)
k , k=−N+1,−N+2, . . . , 2N−2. (17)

It is more convenient to express the total signal power per
subchannel as a function of normalized third-order inter-
cept point, that is, IP3 = AIP3/

√
EMCM, where EMCM is the
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total MCM signal power given by EMCM = N × E{|S|2}.
Using (3), (14), (15), (16), and (17) and performing simple
manipulations, we obtain

Pk =




K0


[1± M(1)

k

IP32N

]2

+
1

IP34N2

[
4M(3)

k + βM(2)
k

]
if 0 ≤ k < N ,

K0
1

IP34N2

[
4M(3)

k + βM(2)
k

]
if −N < k < 0 or N ≤ k < 2N − 1,

(18)

where the sign (±) corresponds to a sign of coefficient a3
(usually minus), K0 = a21E{|S|2}, and β is constellation de-
pendent coefficient defined as

β = E
{|S|4}(

E
{|S|2})2 . (19)

For example, if the transmitted symbols Sk belong to an
m-ary QAM constellation format with m = 22p, where
p = 0, 1, 2, . . . , and in-phase and quadrature components
I ,Q = {−(√m−1),−(√m−3), . . . , +(

√
m−3), +(

√
m−1)},

β can be expressed as

β = 7m− 13
5m− 5

. (20)

It can be seen from (18) that the average power per subchan-
nel after nonlinear amplification (Pk) depends on the num-
ber of subcarriers (N) and the constellation type (β). How-
ever, in case of a large number of subcarriers (N → ∞), it
can easily be shown that Pk only depends on IP3 and ratio
between k and N :

lim
N→∞

Pk=




K0
2

IP34

[
1 + 2

(
k

N

)
+
(
k

N

)2]

if −N < k < 0,

K0

([
1± 2

IP32

]2
+

1
IP34

[
1+2

(
k

N

)
−2
(
k

N

)2])

if 0 ≤ k < N ,

K0
4

IP34

[
2− 2

(
k

N

)
+
(
k

N

)2]

if N ≤ k < 2N − 1.
(21)

The PSD of the MCM signal at the output of a nonlinear am-
plifier depends on the power per subchannel Pk and spec-
tral characteristics of the pulse shape g(t). If the MCM sys-
tem employs symbol randomization and interleaving, the se-
quence of symbols S′k (for given subchannel k) is a sequence
of independent identically distributed zero-mean random
numbers. Thus, the PSD corresponding to the kth subchan-

nel is given by [18, page 205]

Φk( f ) = Pk
2TMCM

∣∣G( f + 2πk∆ f )
∣∣2, (22)

where G( f ) is the Fourier transform of g(t), and TMCM is the
total duration of the multicarrier symbol (including guard
interval). Using (22), the PSD of the nonlinearly amplified
MCM signal can easily be expressed as

Φ( f ) =
2N−2∑

k=−N+1

Pk
2TMCM

∣∣G( f + 2πk∆ f )
∣∣2. (23)

It is noteworthy that the PSD representation (23) takes into
account number of subcarriers, guard interval duration and
modulation format, and it is also accurate for systems with
small number of subcarriers.

5. SIGNAL-TO-DISTORTION RATIO ANALYSIS

It can be seen from the previous section that the nonlinearity
causes the out-of-band spectral regrowth and also introduces
the in-band distortions. The SDR per MCM subcarrier can
be calculated as a ratio between the useful signal power after
nonlinear amplification given by (14) and the average power
of the terms in the second and the third groups given by (15)
and (16). Using this definition, it is straightforward to obtain

SDRk =
[
1±(IP32N)−1M(1)

k

]2
(
IP34N2

)−1(
4M(3)

k +βM(2)
k

) , k = 0, 1, . . . ,N−1.

(24)

However, it should be noted that (24) represents the exact
SDR only if the MCM system employs constant amplitude
modulation, for example, m-ary PSK or 4-QAM. In case of
m-ary QAM modulation (m > 4) the amplification intro-
duced by the first group terms depends on the transmitted
data sequence, and is generally random. Since a conventional
MCM receiver does not take into account this effect, it is
viewed by the receiver as an additional noise. Fortunately,
this effect becomes insignificant when the number of sub-
carriers increases. More detailed analysis of this effect is pro-
vided in the next section.

When the number of subcarriers is large one can use ap-
proximate SDR expressed as (see also previous section)

lim
N→∞

SDRk= IP34±4IP32+4
1+2(k/N)−2(k/N)2

, k=0, 1, . . . ,N−1,

(25)

where the sign (±) corresponds to a sign of a3.
It is interesting to note that in accordance with (25)

the difference between SDR value for the central subcarrier
(k = N/2) and the edge subcarriers (k = 0 or k = N − 1)
asymptotically approaches 10 log10(2/3) ≈ −1.76dB.
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Figure 1: PSD of nonlinearly amplified MCM signal (4-QAM, N =
16, TGI = TS/4, a3 < 0).

It should be mentioned that though exact SDR can be
calculated for some cases (e.g., constant amplitude mod-
ulation: 4-QAM, m-ary PSK, etc.), accurate calculation of
the symbol or bit error probability is more difficult task.
This is due to non-Gaussian properties of the nonlinear
distortion noise. Although the discrete model considered
in this paper can be used to characterize non-Gaussian
properties of the nonlinear noise, it is still very difficult
to obtain simple analytical results for symbol or bit error
rate performance. On the other hand, in the MCM sys-
tems with sufficiently large number of subcarriers, distribu-
tion of the nonlinear noise approaches Gaussian distribu-
tion (as a result of the central limit theorem). Thus, for a
large N , the approximate SER can easily be calculated and
averaged for all k values using well-known theoretical re-
sults for QAM or PSK performance in Gaussian noise [18,
page 278].

6. NUMERICAL AND SIMULATION RESULTS

In this section, we examine effects of nonlinear distortion on
the MCM performance by means of analytical calculation
and by computer (Monte-Carlo) simulation. For all results
below, number of simulated MCM symbols was selected so
that the total number of simulated symbols (i.e., number of
MCM symbols multiplied by number of subcarriers) would
be 108.

As a first example, we investigate the PSD of the 4-QAM
multicarrier system with N = 16, guard interval TGI = TS/4,
and rectangular pulse shape. The numerical and simulation
results for this case are presented in Figure 1. As one can see
the theoretical and simulation curves are in very good agree-
ment. It should also be noted that the proposed model can
accurately predict the fine structure of the out-of-band PSD
even in case of small number of subcarriers.

a3 > 0

a3 < 0

Theory
Simulation

0 16 32 48 64

Subcarrier index (k)

16

17

18

19

20

21

22

SD
R
(d
B
)

Figure 2: SDR versus subcarrier index for two types of nonlinearity
(4-QAM, N = 64, IP3 = 10dB, no background noise).

As a second example, we investigate the SDR and SER in
the presence of the third-order distortions. In Figure 2 the
SDR value versus subcarrier index for the 4-QAMMCM sys-
tem with N = 64 and 20 log10(IP3) = 10dB is presented. It
should be noted that the two curves in Figure 2 correspond
to the same value of the third-order intercept point (10 dB),
the only difference is the sign of coefficient a3. The figure em-
phasizes that the sign of a3 is important for SDR evaluation,
although this is sometimes ignored in the literature.

In Figure 3, the average SER (obtained analytically and
by simulation) is plotted versus 20 log10(IP3) for 64-QAM
MCM system with N = 1024, 256, and 64. As one can see
proposed formulas provide very good prediction of SDR and
reasonable approximation of SER when the number of sub-
carriers is sufficiently large. On the other hand, when N <
256, distribution of the nonlinear distortion noise becomes
more impulsive (i.e., tails fall off more slowly then predicted
by Gaussian approximation), and the actual SER becomes
higher than that predicted by theory.

While Figure 3 shows results for noise-free case, it is often
desirable to take account of the additive background noise.
Extension of the results to this case is straightforward, since
the nonlinear noise and the additive background noise are
independent (see, e.g., [6, 7]). Figure 4 illustrates theoretical
and simulation results, if background noise is taken into ac-
count.

It is interesting to compare the results presented in this
paper with those obtained in [5]. Final result of [5] can be
expressed as

SDR =
(
3
2

)2 IP34
10

, (26)

where we rearranged the expression in accordance with our
mathematical notation.
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Figure 3: Average SER versus IP3: theoretical and simulation results
for the finite number of subcarriers (64-QAM, a3 < 0, no back-
ground noise).
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Figure 4: Average SER versus Eb/N0 in the presence of third-order
nonlinearity (64-QAM system with N = 1024, a3 < 0).

Figure 5 illustrates comparison of simulation results (4-
QAMMCM system withN = 1024) with the theoretical pre-
diction obtained using (25) and (26). It is clearly seen from
the illustrated example that the analysis presented in this pa-
per provides more accurate prediction.

It is more difficult to perform comparison with other
studies reported in [6, 7, 9, 10], since results of these stud-
ies are not expressed in simple form similar to (24), (25),
and (26). However it is reasonable to assume that the analysis
based on Gaussian assumption on input signal, and the anal-
ysis based on the discrete model provides the same results
when N → ∞. Thus, we can simply compare prediction ob-

Theory (N →∞)
Theory (N →∞), see [5]
Simulation (N = 1024)

5 5.5 6 6.5 7 7.5 8 8.5 9
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A
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Figure 5: Average SER versus IP3: comparison with [5] (4-QAM,
a3 < 0, no background noise).

tained using (24) and asymptotical formula (25). This com-
parison is illustrated in Figures 6 and 7. Here, we plot SDR
value for the edge subcarrier versus number of MCM subcar-
riers. As one can see, in case of constant amplitude modu-
lation (4-QAM, Figure 6) theoretical prediction obtained by
(24) is in perfect agreement with simulation results. In case
of nonconstant amplitude modulation (16-QAM, Figure 7),
however, predicted results are slightly optimistic. Thus, for
nonconstant amplitude modulation (m-QAM, m > 4), ex-
pression (24) can be regarded as an upper bound on SDR. On
the contrary, prediction obtained with asymptotical formula
(25) is too pessimistic in case of small number of subcarriers.
As is seen from Figure 6, SDR predicted by (25) significantly
differs from the actual SDRwhenN < 64 (e.g., 5.5dB, 2.4dB,
1.1dB, and 0.3dB for N = 4, 8, 16, and 64, respectively).

Additional remark on the results illustrated in Figures 6
and 7 is as follows. Usually, performance of nonlinearly dis-
torted MCM systems is only expressed in terms of SER or
BER. However, in case of small number of subcarriers there
are two mechanisms at work. First, SDR prediction obtained
under assumption N → ∞ (or Gaussian assumption on in-
put signal) is too pessimistic when the number of subcarriers
is small (see Figures 6 and 7). On the other hand, nonlin-
ear noise at the input of decision device has strongly non-
Gaussian (impulsive) behavior. Thus, BER or SER predic-
tion using Gaussian approximation of nonlinear noise usu-
ally provides too optimistic results (see, e.g., Figure 3). These
two sources of inaccuracy in some cases can simply com-
pensate for each other. Thus, by looking at BER/SER sim-
ulation results, it may seem that the Gaussian assumption
on input signal and the Gaussian approximation of nonlin-
ear noise work well even with small number of subcarriers
(see [7, 19]). However, in general it is not correct, and actual
behavior of nonlinearly distorted MCM signals with small
number of subcarriers is more complicated.



Performance of MCM in the Presence of Smooth Nonlinearity 341

Theory (N →∞), see (25)
Theory (finite N), see (24)
Simulation
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Figure 6: SDR for edge subcarrier of MCM signal versus number
of subcarriers (4-QAM, IP3 = 8dB, a3 < 0, no background noise).

7. CONCLUSION

In this paper, simple and accurate analytical expressions
for the SDR and out-of-band spectrum characterization of
MCM signals in the presence of a third-order nonlinearity
are derived. The analytical derivation is based on the discrete
model of the MCM signal and takes into account number of
MCM subcarriers and modulation format. In addition, sim-
ple asymptotical formulas are provided which can be used as
a first estimation of a maximum allowable level of the third-
order nonlinearity.

The effect of third-order nonlinearity has only been taken
into account, since the third-order nonlinearity is usually
dominated in a real system. However, the analysis presented
here can also be extended to a fifth-order polynomial model.
While the presented analysis provides very good prediction
of the PSD and the SDR even when the number of subcar-
riers is sufficiently small, SER prediction is still problematic
due to non-Gaussian character of the nonlinear distortion
noise. Extension of the analysis to the fifth-order nonlinear-
ity model and SER prediction improvement for the MCM
systems with small number of subcarriers are subjects for fu-
ture research.

APPENDIX

Derivation of (8). Consider the total number of combina-

tions (M(total)
k ) for which following condition (A.1) holds:

n1 + n2 − n3 = k, (A.1)

where n1, n2, n3 can take any values in the range 0, 1, . . . ,N −
1, and −N < k < 2N − 1.

Theory (N →∞), see (25)
Theory (finite N), see (24)
Simulation
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Figure 7: SDR for edge subcarrier of MCM signal versus number of
subcarriers (16-QAM, IP3 = 10dB, a3 < 0, no background noise).

It can easily be shown that the problem of findingM(total)
k

is equivalent to the problem of derivation of the discrete
convolution of the sequences {x(1)i }, {x(2)i }, and {x(3)i }, which
are defined as

x
( j)
i =




1 if 0 ≤ i ≤ N − 1,

0 else,

1 if − (N − 1) ≤ i ≤ 0,

0 else,

for j = 1, 2,

for j = 3.

(A.2)

In order to find above-mentioned convolution we first derive
z-transforms of the sequences {x(1)i }, {x(2)i }, and {x(3)i }:

Xj(z) =




N−1∑
i=0

z−i if j = 1, 2,

N−1∑
i=0

zi if j = 3.

(A.3)

Now, z-transform ofM(total)
k can be expressed as

M(z) = X1(z)X2(z)X3(z) = z−2(N−1)
( N−1∑

i=0
zi
)3

. (A.4)

The sum of geometrical progression in (A.4) can be ex-
pressed as

( N−1∑
i=0

zi
)3

= (1− zN
)3
(1− z)−3

= (1− 3zN + 3z2N − z3N
)
(1− z)−3.

(A.5)



342 EURASIP Journal on Wireless Communications and Networking

Then, the term (1−z)−3 can be represented usingMacLaurin
series

( N−1∑
i=0

zi
)3

= (1− 3zN + 3z2N − z3N
) ∞∑
t=0

C2
t+2z

t , (A.6)

where Cm
n = n!/(n−m)!m! is the binomial coefficient.

Substituting (A.6) into (A.4) yields

M(z) =
∞∑
t=0

C2
t+2z

t−2N+2 − 3
∞∑
t=0

C2
t+2z

t−N+2

+ 3
∞∑
t=0

C2
t+2z

t+2 −
∞∑
t=0

C2
t+2z

t+N+2

=
∞∑

t=−2N+2

C2
t+2Nz

t − 3
∞∑

t=−N+2

C2
t+Nz

t

+ 3
∞∑
t=2

C2
t z

t −
∞∑

t=N+2

C2
t−Nz

t.

(A.7)

The number of combinations M(total)
k that satisfy condition

(A.1) is determined by the sum of all z−k terms in (A.7). For
example, if 0 ≤ k < N − 1, the number of combinations
(M(total)

k ) can be expressed as

M(total)
k = C2

−k+2N − 3C2
−k+N , (A.8)

where Cm
n ≡ 0, if n < m. Similarly, if −N ≤ k < 0 or N ≤ k <

2N − 1,M(total)
k can be expressed as

M(total)
k =



C2
−k+2N − 3C2

−k+N + 3C2
−k if −N ≤ k < 0,

C2
−k+2N if N ≤ k < 2N − 1.

(A.9)
Finally, after simple and straightforward manipulations we
can easily obtain (8).

It is interesting to note that the derivation presented here
for the third-order distortion products can easily be extended
to a general case of mth-order polynomial model. In such a
case, we should find the number of combinations that satisfy
the following condition:

n1 + n2 + · · · + n(m−1)/2 − n(m+1)/2 − · · · − nm = k. (A.10)

Applying the same procedure described above, we can gener-
alize (A.4) as

M(z) = z−((m+1)/2)(N−1)
( N−1∑

i=0
zi
)m

. (A.11)

Now, (A.5) can be rewritten in general form as

( N−1∑
i=0

zi
)m

= (1− zN
)m(

1− z
)−m

. (A.12)

Using binomial expansion for (1−zN )m and representing (1−
z)−m term using MacLaurin series, we obtain

M(z) = z−((m+1)/2)(N−1)
m∑
j=0

(−1) jC j
mz jN ×

∞∑
t=0

Cm−1
t+m−1z

t.

(A.13)

Finally, collecting terms containing z−k, one can easily ex-
press general formula for the total number of mth-order
terms falling at location of kth subchannel as

M(total)
k,m =

�k/N+(N−1)(m−1)/2N�∑
j=0

(−1) jC j
mCm−1

m+k− jN−1+(N−1)(m−1)/2,

(A.14)

where k = −((m−1)/2)(N − 1), . . . , ((m + 1)/2)(N − 1), and
�x� denotes integer part of x.

Two remarks on (A.14) are as follows. First, we should
mention that the asymptotical approximation of (A.14) for
N → ∞ was derived in [12] and termed number of dominant
mth-order terms. However, the results presented in [12] are
not suitable for MCM systems with small number of subcar-
riers. Second, we should also note that in [14] authors heuris-
tically obtained M(total)

k,m , for m = 3, and k = 0, 1, . . . ,N − 1
(i.e., in-band channels only). On the contrary, our result
(A.14) holds for arbitrary N , m and both in-band and out-
of-band subchannels.

Derivation of (11). In order to derive (11), we first note
that the total number of combinations that satisfy the con-
dition n1 = n3 equals N . The number of combinations that
satisfy the condition n2 = n3 also equals N . However, in one
case (k = n1 = n2 = n3) both of these conditions are satis-
fied simultaneously. Thus, we obtain M(1)

k = 2N − 1, where
k = 0, 1, . . . ,N − 1.

Derivation of (12). The result can easily be obtained if we
rearrange the condition (n1 + n2 − n3 = k) and (n1 = n2) as
follows:

2n1 = k + n3. (A.15)

If value of k is fixed and within the range 0, . . . ,N − 1, then
the right-hand side of (A.15) can take N different values:
k, k + 1, k + 2, . . . , k + N − 1. However, condition (A.15) is
only satisfied if the sum in the right-hand side of (A.10) is
even. Thus, it is easy to see that when value of N is even the
number of combinations that satisfy (A.15) is always N/2 re-
gardless of k value. However, one combination should be ex-
cluded from our consideration, because it satisfies the condi-
tion k = n1 = n2 = n3. Thus, if k = 0, . . . ,N − 1 and N is
even thenM(2)

k = N/2− 1. Derivation ofM(2)
k for odd N and

out-of-band subchannels is straightforward.
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