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An ultra-high data rate time reversal (TR) multiple-input multiple-output (MIMO) ultra-wideband (UWB) communication
system with space-time precoding is proposed. When the symbol duration is set to approach the duration of UWB monocycles, the
data rate is close to the limit, resulting in the severe intersymbol interference (ISI). The zero-forcing (ZF) criterion-based space-
time precoding presented in this paper eliminates both ISI and multistream interference (MSI) caused by spatial multiplexing
at the sampling time. With less demand for the degree of freedom (the number of antennas) than other existing schemes, the
proposed scheme enables the data rate to reach the order of Gbps without losing bit error rate (BER) performance. Since TR
signal preprocessing and the proposed precoding both require the channel state information (CSI), a simple but effective channel
estimation algorithm is also proposed to evaluate the impact of channel estimation on the proposed scheme.

1. Introduction

Ultra-wideband (UWB) impulse radio communications, as a
promising candidate for location-aware indoor communica-
tions, wireless sensor networks (WSN) and wireless personal
area network (WPAN), has received significant attention
in both academia and industry in recent years [1, 2]. The
most attractive feature of UWB is its potential to offer
great capacity in theory as compared with the narrowband
systems. However, the conventional UWB system shows
much lower data rate than expectation. This is because
capturing the energy of dense multipath channel [3] and
combating severe intersymbol interference (ISI) caused by
large maximum excess delay of the channel [4] will increase
receiver complexity which limits both detection performance
and data rate under the condition that receivers with
high complexity are not preferred in UWB short-range
applications. To reduce receiver complexity, noncoherent
scheme is developed to bypass the complicated treatments
on UWB channel, whereas the deterioration of detection
performance and the reduction of data rate are inevitable
[5]. On the other hand, the system complexity can be shifted

from the receiver to the transmitter, where the power and
computation resources are generally enough to implement
signal processing. Since preprocessing the signal before
transmission may cope with the deteriorating effects of the
channel, the receiver can keep a simple structure without
losing detection performance and data rate. In particular,
signal preprocessing scheme is desirable in the networks
where a central node with sufficient power and computation
resources serves many distributed nodes with extremely
stringent limits on complexity and power consumption
[6].

A time reversal (TR) (TR is also referred to as pre-Rake
diversity combining [7]) preprocessing-based system with
minimum mean-squared error (MMSE) equalizer is firstly
applied to combat ISI in UWB communications [8]. TR
preprocessing is that the transmitter takes the time reversed
channel impulse response (CIR) as a filter to prefilter the
original signal before transmission. If the prefiltered signal is
radiated into the channel, it convolves with the CIR and leads
to a strong peak at the output of the channel at one particular
instant. As a result, the receiver can be simplified significantly
and meanwhile makes full use of the energy from all paths
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of the channel. Recently, the TR-based UWB system and its
variations have been investigated in [9-14].

Multiple-input multiple-output (MIMO) technique,
employing multiple antennas at the transmitter and receiver,
is capable of increasing data transmission rate by spatial
multiplexing without expanding the bandwidth. In order
to transmit parallel data streams simultaneously (spatial
multiplexing), the multistream interference (MSI) of MIMO
channel must be mitigated. The potential of TR-based UWB
system with multiple antennas to increase data rate is studied
in [9]. In [10], a TR-based scheme for MSI suppression
is proposed for MIMO-UWB system without considering
ISI. (To be exact, the schemes in [10] are proposed for
multiuser UWB system, which consists of an access point
with multiple transmit antennas and several single-antenna
radio terminals. Obviously, it is equivalent to a MIMO-
UWRB system without cooperation among receive antennas.)
Further, TR is proposed to cope with both MSI and ISI in
MIMO-UWRB system in [11]. It is worthwhile to note that the
interferences are not absolutely eliminated by TR in [10, 11]
though they are mitigated to a certain extent, which becomes
the principal factor to cause error for the large signal-to-
noise ratio (SNR) and results in the deterioration of bit error
rate (BER) performance ultimately.

In this paper, we propose an ultra-high data rate TR-
MIMO-UWB system with space-time precoding. Multiple
antennas can increase data rate, whereas the occurrence
of MSI degrades the system performance. The ultra-high
data rate UWB transmission usually requires extremely short
symbol, thus ISI is very strong. In order to implement
a TR-based UWB system, the channel state information
(CSI) must have been available at transmitter. Therefore,
the interferences (MSI and ISI) of TR-MIMO-UWB system
should be canceled by using CSI at transmitter rather
than at receiver. In [15, 16], the precoding scheme, which
is extensively applied in narrowband system, has been
employed to eliminate the MSI of TR-MIMO-UWRB system.
Since the effect of ISI is not taken into account, their system
performances are degenerating rapidly as symbol duration is
shorted. In this work, the space-time precoding matrix based
on zero-forcing (ZF) criterion is originally derived, which
is independent on the degree of freedom (the number of
antenna). The proposed space-time precoding can effectively
eliminate both ISI and MSI, and it is beneficial to achieve the
high data rate of TR-MIMO-UWRB system up to the order of
Gbps without losing BER performance.

Since TR signal preprocessing requires the CSI, a simple
but effective channel estimation algorithm for TR-MIMO-
UWRB system is also presented in this work. In [13, 14], the
authors utilize a feedback channel to send the estimated
channel information from the receiver to the transmitter.
Because the UWB channel is characterized by dense
multi-path, that is, the number of multipath is large, the
required bandwidth for the feedback channel is huge. Hence,
the implementation of feedback channel is unfeasible.
The proposed channel estimation exploits the reciprocity
of the UWB channel which has experimentally been
demonstrated in [12]. That is to say that the receiver sends
training symbols, and the channel estimation algorithm

is performed at transmitter. As the channel estimation
algorithm is introduced to acquire CSI, the imperfection of
CSI inevitably presents at this more practical UWB system.
Since the proposed scheme can more effectively use the CSI
to cancel the interferences, it shows more robustness to the
error of channel estimation.

The rest of this paper is organized as follows. The system
model of ultra-high data rate TR single-input single-output
(SISO) UWRB is described in Section 2, and the TR-MIMO-
UWB system with space-time precoding is proposed in
Section 3. In Section 4, we address the channel estimation
problem for TR-MIMO-UWB system. Section 5 presents
the simulation results. Finally, conclusions are drawn in
Section 6.

Notation. The boldface letters denote vector or matrix. 0y,
is a matrix of size m X n with all entries being zeros. ®
represents convolution operation. | - | stands for integer floor
operation. vec(A) returns A transformed into a column
vector with one column stacked onto the next. ||Al|, AT and
A~! stand for the Euclidian norm, the transpose and the
inverse of matrix A, respectively.

2. System Model of TR-SISO-UWB

In this section, a peer-to-peer TR-SISO-UWB system is
described. The UWB impulse radio signal with binary pulse
amplitude modulation (BPAM) is

2(t) =By Y. bjw(t - jT), (1)

j:—oc

where w(t) is the monocycle pulse waveform with very short
duration T, and normalized energy, Ts = N,T,, is the symbol
duration which is assumed to be an integer multiple of
the pulse waveform duration, b; € {1} is the jth binary
symbol and Ej, denotes the bit energy. z(¢) is prefiltered by the
time reversed CIR before transmission, then the transmitted
signal is

x(t) = 2(t) 9 §(~1) =By 3 bys(t—jT.),  (2)

j=—o

where g(t) is the estimate of the UWB channel impulse
response g(t) and

s(t) = w(t) ® g(—1) (3)

is the transmitted waveform for one binary symbol.

The dense multipath environment, such as the industrial
and indoor office [17], is considered in this paper, and the
CIR g(t) is modeled as

L1

g(t) = Z ad(t — IA), (4)

1=0

where ¢ is the Dirac delta function, L, is the number of
resolvable multipath components (MPCs), ; is the fading
coefficient of the Ith MPC, and A is the minimum multipath



EURASIP Journal on Wireless Communications and Networking 3

resolution, which is equal to the duration of w(t) (A = T,),
as any two paths whose relative delay is less than T, are
not resolvable. The maximum excess delay of the channel is
denoted by Ty = (L — 1)A. In conventional UWB systems,
the symbol duration T; is usually set large enough (T, >
T, + T,) to avoid or alleviate ISI. However, in this paper, T;
is set much smaller than T, (Ts < T;) to achieve an ultra-
high data rate. It can be found that the waveform duration of
s(t) is Ty + To, and thus the transmitted waveform for one
symbol overlaps that of other symbols.

The transmitted signal is radiated into the channel, and
it convolves with the CIR. The received signal is

r(t) =x(t)®g(t) + n(t)=\[Ey Zw bjw(t— jT.) @R(t) + n(t),
o (5)

where
R(t) = g(—t) ® g(t) (6)

is the correlation function between g(#) and g(¢), n(¢) is the
zero-mean additive white Gaussian noise (AWGN) with two
sided power spectral density (PSD) Ny/2. Substituting g(¢) =
S0 @8t — 1) and (4) into (6), we have

[+Lg—1

St—1A) > @i, —Le+1<1<0,
R(t) = o (7
g

6(t—IA) Z Aicip;, 1<l< Lg - 1.
i=0

Since the dense multipath channel is regarded as an equally
spaced model, (7) is actually a sequence of delta functions
with regular spacings. This channel model is employed for
the only purpose of facilitating the analysis for ISI. And if
more general channel model is involved, the validity of our
proposal is still supported. If g(¢) is the perfect estimation of
g(1), the peak of R(¢) is R(0), and R(0) = Z,»Li(;l o? = 1 dueto
channel energy normalization. A simple filter is designed to
capture the desired energy at the positions of peak as follows:

yi = I r(t+jT)w(t)dt = biJE,R(O) + I +nj,  (8)

where y; is the decision statistic for bj,n; = fOT“ n(t +
jTo)w(t)dt is the noisy component, and I; is the ISI
component for b;. For the purpose of analyzing the
interference pattern at receiver, we define the received
waveform () for one symbol as

c(t) = s(t) ® g(t) = w(t) ® R(t). 9)

The process that signal transmits from transmitter to receiver
in the absence of noise is illustrated in Figure 1. Since the
duration of ¢(t) ranges from —T, to T, + Ty, any symbol
is interfered by its following M, symbols and preceding M,
symbols at receiver, where My = |Tg/T] = [(Ly — 1)/N;]
and M, = [(Ty + T,)/Ts] = |Lg/Ng]. From (5), R(t)

can be considered as an equivalent channel impulse
response (ECIR), and we define discrete form of the
equivalent channel as a (M; + M, + 1) X 1 vector

£ = [fortoo fors foo fioeoos fin ], where
Ty
ﬁ:LcU%meﬁ=Mm% (10)

i=—-M,...,—1,0,1,...,M,, is the ith sampling value of
ECIR. Using the discrete form of R(¢), the ISI component in
(8) can be expressed as

Jj+My

L= > fib: (11)

i=j—-Mp

i
It can be observed in (11) that the concerned interferences
are only dependent on the sampling value of the ECIR, yet
they do not relate to the value of ECIR at any other time.

3. TR-MIMO-UWB with Space-Time Precoding

3.1. System Description. A TR-MIMO-UWB communica-
tion system includes a transmitter equipped with N; antennas
and a receiver equipped with N, antennas. N, parallel data
streams are transmitted simultaneously. In typical indoor
environments, the UWB channel is quasistatic [17, 18].
That means UWB channels remain invariant over a block
of symbols duration, but they are allowed to change from
block to block. Therefore, block transmission is adopted in
the proposed scheme. We consider a block of N, X L bit
binary symbols, which is represented by L column vectors
bi = [biy,bis...bin]" fori = 1,2,...,L. The L column
vectors are stacked in one N,L X 1 column vector which is
B = VCC([bl,bz,. .. ,bL]).

The N;L X N,L space-time precoding matrix is denoted
by &#. After using P to prefilter B, we get an N,L X 1 column
vector

X = aP B, (12)

where « = N,L/||P Bl is the energy normalization factor
which guarantees the average transmitted energy to be +/Ej
for one binary symbol.

X 1is fed into a parallel-to-serial converter to get L
column vectors x; of size N, X 1 fori = 1,2,...,L(X =
vec([x1,X2,...,%])). The N, x (M; + L + M,) transmit
symbol matrix D is constructed by padding M, zero guard
vectors at the front of x; and M, zero guard vectors at the
end of x; (the size of all zero guard vectors is N, X 1); that
is, D = [ON,xM,>X1,X2,...> XL, ON,xa, |- The (k, j)th entry of
D is denoted by dy j, which is the jth transmit symbol of
kth data stream. The TR signal radiated by the pth antenna
at transmitter in a block duration (M; + L + M,)T, for
p=12,...,N; is given by

\/7M1+§‘+M2 1 %d v
t)= E re—y i t— j — 1 N ®A —t >
xp(1) b = NS k,]w( (j ) Ts) 8kp(—1)

(13)

where gk ,(t) is the estimation of g ,(¢) which stands for
the impulse response of the multipath channel between the
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pth antenna at transmitter and the kth antenna at receiver.
In Section 4, a channel estimation algorithm is proposed to
obtain g ,(¢). It is worthwhile to note that all N, parallel
data streams are simultaneously transmitted from the pth
antenna at transmitter.

The signal received by the gth antenna at receiver for g =
1,2,..., N, is expressed as

Ni
re(t) = pr(t) ® gq.p(t) +ng(t)
p=1

M;+L+M; N,

:\/ET’ Z dej

j=1 k=1

t— ]_1) )®qu(t)

+ ny(1),
(14)

where n4(t) is the AWGN at the gth receive antenna and
Ry k(1) is the sum of N; correlation functions which is defined
as

Ryk(t) = rzgkp( 1) ® gq.p(1), (15)

for g,k = 1,2,...,N,. It can be noticed in (14) that the
qth receive antenna receives all N, parallel data streams
simultaneously from N, equivalent channels which is rep-
resented by its impulse response Ry (f). At the back-end of
the gth receive antenna, a simple filter which matches to w(t)
captures the energy as follows:

To
o [
19 0 q

where y;, is the jth decision statistic at the gth receive
antenna, j = 1,2,...,M; + L+ M, and g = 1,2,...,N,.
Substituting (14) into (16), we have

(t+(j - DT)w(b)dt, (16)

Yia = Zjq T Njg> (17)
where

M;+L+M; N,

To
Zjg = JO ‘|\/E Z de,iw(t)®Rq,k(t)]’w(t)dt

i=1 k=1

_JE,Z Z dk]+,J [w(t) ® Ryt +iT) |w(t)dt

k=1i=—
(18)
is the sampling value of signal and
T
mig= | ma(t G- DT)ewd  (19)

is the discrete noise component.

3.2. Space-Time Precoding Matrix Design. In order to trans-
mit N, parallel data streams simultaneously at a very high
data rate without losing performance, the MSI and ISI

must be eliminated. As the CSI is already available for the
implementation of TR signal preprocessing, we can use the
CSI to calculate the precoding matrix &. In this paper, we
seek the solution based on ZF criterion.

The jth decision statistic vector of size N, x 1 is

given by y; = [yj,l,yj,z,...,yj,N,]T, and the corresponding

signal vector and noise vector are z; = [2j1,Zj2,...,

ZjN, 1%, n; = [nj1,nj2...,1jN, 1", respectively. Moreover,
M1+L+M2

the M; + L + M, column vectors {y]} are stacked
in one N,(M; + L + M,) x 1 column Vector Y, that is,
Y =vec(y1,Y2--->YM+L+M,]). Similarly, we get Z = vec([z,,
Z2,..sZvpriam,)) and N = vec([mp,my,.. 0 aem ).
Notably, the desired decision statistic vector for bit vector
b; is ym+j> j = 1,2,...,L. We stack the desired decision
statistic vectors in an N,L X 1 column vector 'g =
vec ([Ya+1> Ymy+2> - - - » Yan+L] ), which is the decision statistic
for B. Now, we can establish the discrete input-output
relationship between B and Y as

Y=Z+N=JEHX+N =aEHPB+N, (20)

where J is the space-time channel matrix (STCM). Via
extending ECIR to MIMO channel, the ECIR matrix of size
N, X N, is given by

Ri(t) Rin, (1)
HO=| + -~ | (21)
Ry, 1(t) = -+ Ry, (1)

Then, the STCM # in (20) can be represented as an N, (M; +
L+ M;) X N,L block Toeplitz matrix

B H 0 A 0
H 1 Hopy
Hoya - 0
H : . Hoyg
H, H H 41
H=| H, H, : , (22)
H, H_,
Hy, : “. Hp
0 Hy, - H
o 0 --+ Hu, |

where H; = H(iTy), i = —M;i,...,—1, 0,1,...,M, is the
ith sampling value of ECIR matrix. From (20), it can be
found that the space-time MIMO relationship between the
transmitted information bits and the sampling values of
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s(t= (= DT s(t—jTs) s(t = (j+1DTs)

JTs — Tg T
(c)
fi
. T T f
| | | |
jTs

(d)

c(t=(j—-DTs) ot —jTs)

c(t=(G+DTs)

FiGURE 1: The process that signal transmits from the transmitter to receiver in the absence of noise. (a) Signal at the output of transmitter.
(b) The process of transmitted signal convolving with CIR. (c) The received waveform for one symbol. (d) The discrete form of ECIR. (e)

Received waveforms are interfered by each other.

received signal is constructed. Therefore, the interference in
time domain (ISI) and the interference in spatial domain
(MSI) can be eliminated at the same time by employing ZF
precoding matrix & to diagonalize #.

Since the right pseudoinverse of J# is inexistent
(N,(M; + L + M) > N.L), ZF-based precoding matrix J
cannot be directly solved from (20). On the other hand,

. T
H can be rewritten as H [th,hzT,...,hIEr(MﬁLJer)] ,

where h; is the jth row of #¢. The desired statistic Yisa
part of Y, which consists of the elements ranging from the
(N,M; + 1)th to the (N, M; + N,L)th within the vector ¥. In
(20), g is related to the rows ranging from the (N, M; + 1)th
to the (N, M; + N,L)th within the matrix . Therefore, the
input-output relationship between B and ¥ is given as

Y= a|E,HPB+ N, (23)
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where # = [h&lNr+1,h£IlNr+2,...,hﬂlNﬁLNr]T is an N,L X
N, L matrix which consists of the (N M+ 1)th to the (N, M; +
N;L)th row in the matrix # and N = vec ([np+1, g +25
..o>Mp42]). According to (23), the ZF-based precoding
matrix which diagonalizes His given as

P = 5 (F7T) (24)

Since # is a square matrix, its right pseudoinverse exists,
and (24) can be calculated.

However, the actual ECIR matrix H(#) and correspond-
ing STCM # cannot be obtained at transmitter, we can only
achieve the estimations of them. The estimated ECIR matrix
at transmitter is calculated as

Ry (t) Rin, (1)
H(t) = : ) (25)
Ry1(t) - Ry, (1)
where
N 1 & .
Ryi(t) = ﬁ;gk,p(_t) ® g.p(1) (26)

is the estimated ECIR between the kth equivalent transmit
antenna and pth receive antenna. Replacing H(#) with H(t)
in (22), the estimated STCM His immediately obtained and
used to calculate the precoding matrix &. Obviously, if the
estimations are perfect, the interference can be effectively
eliminated; otherwise, the imperfect estimations may result
in the residual interferences.

Some remarks about the TR-MIMO-UWB system with
ZF space-time precoding are essential.

(i) From (13), all N, parallel data streams are simul-
taneously transmitted from one antenna. That means the
number of transmitted parallel data streams is independent
on Ny, but only lies on N,. This is not in common with
ordinary MIMO systems in which min{N;, N, } parallel data
streams can be normally transmitted. This is because the TR
MIMO system in this paper is a wideband system, where the
TR processing filters or the CIR act as orthogonal codes to
spread information bits (they are actually quasiorthogonal
and after TR preprocessing the interferences are mitigated to
a certain extent). Therefore, the data stream number is not
constrained by min{N;, N, }.

(i) There is no cooperation among receive antennas in
the proposed scheme so that the scheme can be naturally
extended to multiuser UWB system.

(iii) The motivation to insert the zero guard vectors is
to prevent the interference between blocks. Admittedly, this
operation will result in some data rate reduction. In fact, the
data rate of the proposed system is R, = N,L/(M;+L+M;)T;
bits per second (bps). Owing to that, the coherence time of
the typical indoor UWB channel is rather larger than the
maximum excess delay of the channel, N, L is of the same
order as M; + L + M,. Therefore, the data rate is mainly
dependent upon symbol duration Ts.

(iv) A ZF prefiltering scheme for MSI suppression is
proposed in [10], which forces received interference to zero
within the whole symbol duration. Since our ZF space-time
precoding only forces the received interference to zero at the
sampling time within one symbol duration, the proposed
precoding scheme needs less degree of freedom than ZF
prefiltering. For example, when N; < N,, our scheme can
work well, but ZF prefiltering is inapplicable, and it needs
more transmit antennas.

4. Channel Estimation Algorithm

As indicated in last section, the operation of the canceling
interferences requires knowledge of the channels. This
information must be provided by channel estimation. In this
section, we address the channel estimation problem for TR-
MIMO-UWB system.

The reciprocity of UWB channel has been experimentally
demonstrated in [12]. Consequently, the channel from
transmitter to receiver can be estimated by sending training
symbols from the receiver and performing channel estima-
tion algorithm at the transmitter. This scheme shuns the
implementation of feedback channel which is unfeasible in
UWB system. The gist of the proposed algorithm is that
the channel is sounded by sending pilot pulses. During the
estimation process, the ISI is avoided by letting the pulse
repetition interval be larger than Ty, and the MSI is avoided
by using orthogonal training symbols. An orthogonal train-
ing symbol set is defined as A = {ap}g’:l, where each
training symbol is represented as a vector with elements
{ap,n}fj;l taking values of 1 and the orthogonality of the
set guarantees the relationship

N?’
ap - ap’ = Zapjnap’)n = N;»(S(p - p,) (27)
n=1
holds. In the initialization stage of one block, the training
symbol a, is sent by the pth antenna at receiver. The training
pulses waveform radiated by the pth antenna at receiver is
expressed as

N,
s,(t) = > apaw(t—(n—1)T7), (28)
n=1
for p = 1,2,...,N,. In (28), the repetition interval of the
training pulses T, is larger than Ty to avoid interference
between training pulses.
The training pulses waveform received by the gth
antenna at transmitter is written as

N,

rg(t) = le;(t) ® go.p(1) +1g(t), (29)
P

where g, ,(t) = Zlegl (x?’P(S(t — IA) is the channel between
the gth antenna at transmitter and the pth antenna at
receiver. The transmitter correlates and samples at every A
time instant on the received training pulses waveform to get

ve(n,1) = J

IA

(+1)A
rg(t+(n— DT w(t)dt. (30)
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Substituting (29) into (30), we have

Ny
va(m, 1) = > ap ol + Ny(n,1), (31)
p=1
where Ny(n,l) = fl(AlH)A ng(t + (n — 1)T)w(t)dt is zero
mean Gaussian noise with variance Ny/2. The estimated
fading coefficient of the channel between the gth antenna of

transmitter and the p’th antenna of receiver can be obtained
by

N
AP 1 <
(x?P = ﬁzapr,nvq(n,l), (32)

"'n=1

forq = 1,2,...,Nyand p’ = 1,2,...,N,. Inserting (31) into
(32) and using (27), we have

&M = o+ Ny (1), (33)

where Ny, = (1/N;) sz;l ay nNy(n,1) the estimation noise
with zero mean and variance Ny/2N,. The training symbols
can be repeated to send N, times to get N. estimations
of each fading coefficient. Then, N, estimation results are
averaged to reduce the estimation noise. The result of the

averaged estimated fading coefficient is E?’p = oc?’P +
Ngp» where N, is the averaged estimation noise with
variance No/2N.N,. The corresponding estimated CIR is

Loy (1) = Z,ngl &?’p 8(t — IA). Since the UWB short-range
applications always occur in the indoor entironment, where
the surrounding objects and UWB transceiver are nearly
quiescent [17, 18], the coherent time of channel is very long.
Therefore, we can increase N, to reduce the estimation noise
within the channel coherent time; however, this will result
in a data throughput reduction. When N, goes to infinity,
the estimation noise goes to zero and the estimated channel
tends to perfection. The impact of channel estimation on TR-
MIMO-UWB system with ZF precoding is investigated by
simulations in Section 5.

5. Simulation Results

In this section, simulations and comparisons are performed
to validate the proposed scheme. In all cases, the MIMO-
UWB channel is generated according to IEEE 802.15.3a
channel model recommendation CM4 [19] and truncated to
Ty = 100ns. Although the channel model CM4 is designed
for single-input single-output (SISO) scenario, the extension
to a MIMO configuration is achieved by assuming that the
MIMO channel parameters are independent and identically
distributed realizations from the same statistical model. The
used impulse shape is the second derivative of a Gaussian
function w(t) = Ag(1 — 47(t/T,)?) exp(—Zn(t/Tm)z), where
Ap is the energy normalized parameter and 7,, = 0.2788 ns
is the pulse shaping parameter. The duration of w(f) is set as
T, = 0.5 ns so that the minimum multipath resolution of
channel is A = 0.5 ns.

BER

-2 0 2 4 6 8 10 12 14 16 18 20
Ey/No (dB)
—e— ZF space-time precoding, Ts = 10 ns
—o— ZF space-time precoding, Ts = 0.5 ns

--a- TR-MIMO-UWB [11], Ts = 10 ns
--o- TR-MIMO-UWB [11], Ts = 0.5ns

Ficure 2: BER performance comparison between the proposed
TR-MIMO-UWB system with space-time precoding and the TR-
MIMO-UWB system. N; = 2, N, = 2.

TEST 1: BER Performance Comparison between the Proposed
Scheme and the Spatial Multiplexed TR-MIMO-UWB System
Proposed in [11]. First, we evaluate the BER performance
of TR-MIMO-UWB system with ZF precoding proposed in
this paper and compare it with the spatial multiplexed TR-
MIMO-UWRB system proposed in [11]. In this case, both the
transmitter and receiver are equipped with N; = N, = 2
antennas and N, = 2 parallel data streams are transmitted
from transmitter simultaneously. The symbol duration T is
set as 0.5 ns and 10 ns, respectively, which are much smaller
than T, = 100ns. L is set as 200. In this test case, we
assume the CSI is perfect. The BER versus E/Ny curves are
plotted in Figure 2. It is observed that the BER performance
is improved by the proposed space-time precoding scheme.
When ISI is strong (T; = 0.5ns), the BER curve of the
spatial multiplexed TR-MIMO-UWB system [11] suffers a
floor at high E,/Nj, while the proposed scheme can obtain a
remarkable gain. When T = 0.5ns, My = [ (Tg + T,)/Ts| =
201 and M, = | Tg/Ts] = 200. We can compute the bit rate
Ry = N,L/(M, + L+ M) T, ~ 4/3 Gbps.

TEST 2: BER Performance Comparison between the Proposed
Scheme and ZF Prefiltering Scheme [10]. Then, the com-
parison between the proposed scheme and ZF prefiltering
scheme [10] is given. In order to meet the needs of degree of
freedom for ZF prefiltering, we set the parameters N; = 4,
N, = 2, and the length of prefiltering 400 chips. The CSI
is perfect for both schemes. From Figure 3, the proposed
scheme outperforms ZF prefiltering in terms of BER when
both schemes choose the same deployment of antenna (N; =
4, N, = 2). The proposed precoding scheme focuses energy
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BER

Ey/Ny (dB)

—o— ZF space-time precoding, Ts = 100 ns, Ny = 4, N, = 2
—— ZF space-time precoding, Ts = 10ns, Ny = 4, N, =2
--a— ZF prefiltering [10], Ts = 100 ns, N; = 4, N, = 2

= - ZF prefiltering [10], Ts = 10ns, Ny = 4, N, =2

—<— ZF space-time precoding, Ts = 10ns, Ny = 2, N, =2
—=— ZF space-time precoding, Ts = 10ns, Ny = 2, N, = 4

F1GURrk 3: BER performance comparison between the proposed ZF-
based space-time precoding for TR-MIMO-UWB system and ZF-
based prefiltering scheme.

on the sampling time to eliminate interferences and ignores
other time; therefore, it has higher energy efficiency than ZF
prefiltering. Since ZF prefiltering does not consider ISI, the
BER curve suffers a floor at high E;/Ny when ISI is severe. In
order to show that the proposed scheme demands less degree
of freedom than ZF prefiltering, the BER performances of
the proposed scheme when Ny = 2, N, = 2 and N; = 2,
N, = 4 are also evaluated. It can be shown the proposed
scheme outperforms ZF prefiltering even though less trans-
mit antennas are used. When more transmit antennas are
employed, the proposed scheme obtains a considerable gain
due to a higher energy efficiency provided by more degree of
freedom. It is worthwhile to point out that when N; = 2 and
N, = 4, the proposed scheme can transmit N, = 4 parallel
data streams normally, this is not in common with ordinary
MIMO systems. It is shown in Figure 3 that the performance
of the proposed scheme with N; = 2, N, = 2 and that with
N; = 2, N, = 4 are uniform. This is because the same number
of transmit antennas offers the same degree of freedom to
eliminate interference and results in the same performance.
However, the data rate with N, = 4 is twice as high as that
with N, = 2.

TEST 3: The Impact of Channel Estimation on the Proposed
Scheme. We have so far assumed the CSI is perfect. In this
case, the impact of imperfect channel estimation on the
proposed scheme is investigated. Both the transmitter and
receiver are equipped with Ny = N, = 2 antennas, and
N, = 2 parallel data streams are transmitted from transmitter
simultaneously. The data symbol duration T is set as 10 ns.
The channel estimation algorithm proposed in Section 4 is

100
§

107" p:

1072 f:

BER

1073 |

1074 ¢

-2 0 2 4 6 8§ 10 12 14 16 18 20
Ey/Ny (dB)

—&— Imperfect channel estimation, N, = 1
—=— Imperfect channel estimation, N, = 5
—o— Imperfect channel estimation, N, = 10
—e— Imperfect channel estimation, N, = 20
—— Perfect channel estimation

FiGure 4: The impact of channel estimation on the proposed
scheme. N; = 2, N, = 2, and T = 10 ns.

employed in the initialization stage of one block. Orthogonal
training symbol set A = {aj,a} = {{1,1},{1,—1}} is
used. The repetition interval of the training pulse is set as
T; = 100ns to avoid interference between training pulses.
The repetition time of training symbols is set as N, =
1,5,10, and 20, respectively. Increasing N, will improve the
accuracy of channel estimation. The simulation results are
shown in Figure 4. The BER performance which corresponds
to the perfect channel estimation is also plotted. As N
increases, the BER performance gets better at the price of
data throughput reduction. Therefore, there is a tradeoff
between performance and data throughput. The imperfect
estimation brings out the residual interferences, and the BER
curve suffers a floor at high E,/Ny. That is because the
residual interferences become the principal factor to cause
error at high E,/Ny. When N, = 20, the estimation noise is
small, and the corresponding BER is close to that of perfect
channel estimation.

TEST 4: BER Performance Comparison between the Proposed
Scheme and Other Schemes When Imperfect CSI Presents.
Finally, the dependence of three schemes (the proposed
scheme, the spatial multiplexed TR-MIMO-UWB system
[11] and ZF prefiltering scheme [10]) on channel estimation
is investigated. The system parameters are set as follows:
Nt = 4, N, = 2, and T; = 10ns. The orthogonal training
symbol set used to execute channel estimation algorithm is
the same as TEST 3 and T, = 100 ns. The repetition time
of training symbols is set as N. = 1,5, respectively. Figure 5
presents the simulation results. When the transmitter can
only use imperfect CSI to implement preprocessing (this
comes nearer to practical situation), the improvement of
BER performance obtained by the proposed scheme is



EURASIP Journal on Wireless Communications and Networking 9

10°
3

107! §

1072 ¢

BER

1073

1074

E,/Ny (dB)

—e— ZF space-time precoding, N, = 5
—— ZF space-time precoding, N, = 1
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Figure 5: BER performance comparison between the proposed
scheme and other schemes when imperfect CSI presents. N, = 4,
N, =2,and T = 10ns.

remarkable. From Figure 5, when imperfect CSI presents,
the performance of the proposed scheme is also solid and
outperforms other schemes. Notably, the performance of the
proposed scheme with N. = 1 still outperforms the two
other schemes with N, = 5. That is because the CSI is more
effectively used to cancel the interferences by the proposed
scheme, and the residual interferences are least. The spatial
multiplexed TR-MIMO-UWB system [11] can suppress the
ISI and MSI to a certain extend, and it shows some robustness
to imperfect CSI. Since ZF prefiltering scheme leaves ISI out
of consideration [10], its performance becomes worst at high
Ey/Ny, where the ISI and the residual MSI are strong.

6. Conclusion

An ultra-high data rate TR-MIMO-UWB system with space-
time precoding is proposed in this paper. After the system
model of TR-MIMO-UWSB is investigated, the computation
of the ZF criterion-based space-time precoding matrix is
originally derived. With less demand for degree of freedom
than other schemes, the proposed space-time precoding
scheme can effectively eliminate both ISI and MSI. As a
result, the TR-MIMO-UWB system achieves ultra-high data
rate of the order of Gbps and keeps BER performance
well. The performance of the proposed scheme is evaluated
through computer simulations. It is shown that the proposed
scheme outperforms the spatial multiplexed TR-MIMO-
UWB system and ZF prefiltering scheme. A simple but
effective channel estimation algorithm is proposed to provide
the estimated CSI for preprocessing. The impact of channel

estimation on the proposed scheme is also investigated
by simulations. The results confirm that the CSI is more
effectively used to remove the interferences by the proposed
scheme.
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