Hindawi Publishing Corporation

EURASIP Journal on Wireless Communications and Networking
Volume 2010, Article ID 263210, 12 pages
doi:10.1155/2010/263210

Research Article

Design of Packet-Based Block Codes with Shift Operators

Ali Al-Shaikhi! and Jacek Ilow?

I Department of Electrical Engineering, King Fahd University of Petroleum and Minerals, P.O. Box 1203, Dhahran 31261, Saudi Arabia
2 Department of Electrical and Computer Engineering, Dalhousie University, 1360 Barrington St., P.O. Box 1000 Halifax,
NS, Canada B3]-2X4

Correspondence should be addressed to Ali Al-Shaikhi, shaikhi@kfupm.edu.sa
Received 22 October 2009; Accepted 31 December 2009
Academic Editor: Nicholas Kolokotronis

Copyright © 2010 A. Al-Shaikhi and J. Ilow. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

This paper introduces packet-oriented block codes for the recovery of lost packets and the correction of an erroneous single packet.
Specifically, a family of systematic codes is proposed, based on a Vandermonde matrix applied to a group of k information packets
to construct r redundant packets, where the elements of the Vandermonde matrix are bit-level right arithmetic shift operators. The
code design is applicable to packets of any size, provided that the packets within a block of k information packets are of uniform
length. In order to decrease the overhead associated with packet padding using shift operators, non-Vandermonde matrices are
also proposed for designing packet-oriented block codes. An efficient matrix inversion procedure for the off-line design of the
decoding algorithm is presented to recover lost packets. The error correction capability of the design is investigated as well. The
decoding algorithm, based on syndrome decoding, to correct a single erroneous packet in a group of n = k + r received packets is
presented. The paper is equipped with examples of codes using different parameters. The code designs and their performance are

tested using Monte Carlo simulations; the results obtained exhibit good agreement with the corresponding theoretical results.

1. Introduction

Real-time applications are delay sensitive and, in the Internet,
are primarily based on user datagram protocol (UDP).
Packet-level forward error correction (FEC) is a packet loss
recovery technique which does not require retransmissions
and allows packet delivery with bounded delay and con-
trollable reliability [1]. In order to protect k information
packets, ¥ = n — k additional redundancy packets are also
sent. The term “packet” is loosely applied in this context, as
in many proposals, packet-level FEC is used at the data-link
layer. Packet-level FEC aims at recovering some of the lost
packets, where the lost packets originate from erroneous bit
transmissions and packet discarding at the lower protocol
layers, especially for multihop networks, as well as from
congestions in the network and buffer overflows. When
packet level FEC is deployed alone to recover from lost
packets, the packet loss rate (PLR) is reduced compared to
the PLR in the network. However, there is no guarantee
that all packets will be recovered at the destination. This
is acceptable in some applications like video and audio
streaming or multicasting protocols [2].

The parity packets in the existing packet-level FEC
schemes are constructed in a similar fashion as parity
bits/symbols in the linear block codes used in digital
transmission systems, except the bits used in the encoding
process are from different packets. The receiver is able to
recover up to a certain number of lost/erroneous packets in
a block of n transmitted packets governed by the minimum
distance of the code [1, 3].

There are a number of powerful and efficient FEC
schemes to recover from erasures and/or errors [4], such
as low density parity check (LDPC) codes and tornado
codes, which use bipartite graphs [2, 5]. Also, Reed Solomon
(R-S) codes are used in many applications. However, the
codewords in these codes are rather short, and this dictates
the construction of the parity packets, which are usually
visualized as arranging information packets row-wise and
running the FEC code column-wise [6, 7]. An alternative
to this is to use the turbo codes to construct the turbo
code frame, and then split the frame into packets. This is
only feasible in turbo codes because of the large size of the
codewords [8].

2 EURASIP Journal on Wireless Communications and Networking

In practical applications, in addition to erasure/error
recovery capability of the code, another important aspect
to consider is the complexity of the encoding and decoding
processes [9]. This aspect motivates the investigations in this
paper, where the only operations permitted on packets are
arithmetic packet shifts and binary additions. Particularly,
this paper focuses on systematic codes with coefficient
matrices based on the Vandermonde or NonVandermonde
structures. Both designs, by incorporating packet shifts, facil-
itate fast matrix-vector multiplication and efficient inversion
of submatrices involved in the erasure or erroneous packet
recovery processes. In contrast to other systematic erasure
codes based on Vandermonde matrices, the proposed codes
are not using Vandermonde matrices to manipulate elements
(packet fragments) from the Galois field (GF), but rather
use them to operate on whole packets by working with their
shifts. The benefit of this approach is the lower encoding and
decoding complexities of the designs presented in this paper.
The proposed codes are maximum distance separable (MDS)
and, while maintaining comparable performance as in the
more conventional ones, are also quite flexible in the choice
of the code rate.

2. Linear Block Codes in Packet-Level FEC

In conventional applications of systematic codes to packet-
level FEC, a unit of information, either symbol or bit, m;,
i = 1,...,k, is taken from each of the k information
packets. These k symbols are used to construct r parity
symbols with the help of the coefficient matrix P. The parity
symbols are then transmitted in r redundancy packets. The
coded/transmitted symbols on n = r + k packets, represented
by the column vector p, are calculated at the transmitter
(encoder) using the following linear system of equations:

G-m=p, (1)

where m is the column vector of k information symbols from
I

k packets, G = [

P
I is the k X k identity matrix. For R-S codes, the matrix

multiplication in (1) uses GF arithmetics. In general, if all
information packets are of the same length £, (1) is used
LL/b] + 1 times to construct the coded packets, where b is
the number of bits represented in each symbol and | -] is
the floor operator. The assumption used in this paper is that
all packets in the coded group are of the same length. This
imposes some limitations which can be overcome by padding
the packets to the same length. For brevity of notation, for
all symbols in the group of packets, we rewrite (1) using the
packet version of this relationship as:

} is the n X k generator matrix, and

G-M=P, (2)

where M is a matrix of information packets arranged in
rows, each with [£/b] + 1 symbol elements, and P is the
corresponding matrix of coded packets.

At the receiver side, for MDS codes, if there are lost
information packets, we have to solve the following system
of equations for M:

G- M =Pt (3)

or equivalently, determine
-1
M- (6) P @

where P is the vector of any k received packets, G* is a k x k
submatrix of G with rows corresponding to the k received
packets as determined by the received packets sequence
numbers, and (+) ! represents the inverse of a matrix. There
are many matrix inversion techniques that could be used,
such as those based on Cramer’s rule procedure, Gaussian
elimination, or Gaussian Jordan elimination methods [10-
12]. We will present later a suitable technique for our designs
for finding the matrix inverse efficiently for the proposed
codes.

The main challenge in the design of an erasure code
is to determine G, or in the case of systematic codes, the
corresponding coefficient matrix P. For MDS codes, the
matrix G should be designed in such a way that any k X k
submatrix, G*, has to be invertible (full rank). The total
number of such submatrices is (Z), where () represents
the n-choose-k operator. The simplest two designs of G are
the repetition code and the single parity check code. In the
former case, the code is (1, 1, n) where P is the column vector
of all 1’s, while the latter is the code (k + 1,k,2) which
adds one more packet consisting of the parity check of all
information packets; that is, P is the row vector of all I’s.
These two codes, though simple to use, are not the best, since
the former has a low rate while the latter recovers at most
only one missing packet. In the case of the systematic codes
considered in this paper, there are other matrices that could
be used as P resulting in the desired properties of G* being
invertible, such as the Cauchy and Vandermonde matrices.
We will discuss next the Vandermonde matrix which is used
as the coefficient matrix P in the R-S erasure codes. The
Vandermonde matrix is also utilized in the design of the
proposed code in this paper, but with a different building
element than in the case of R-S codes.

The Vandermonde matrix V, with r X k elements, is given
by the following [13]:

(1 o« ad o]
1 oy & --- af!
V=11 a & --- &' (5)
2 k-1
I =S R A

This matrix is proven to be nonsingular if the parameters
a,, for z = 0,...,r — 1, are distinct. For R-S erasure
codes with P = V, the a, elements are taken from the
extended GF, GF(p?), where p is a prime number (p = 2
is used most of the time) and b is any integer (b = 8 is

EURASIP Journal on Wireless Communications and Networking 3

used for highest efficiency to represent a byte). Therefore,
multiplication and addition operations in (2) and in (4)
must be done on that extended GF. As a result, the following
problems are encountered when working with R-S codes
for packet-level FEC: (i) the code rates (parameters) are
limited and (ii) the encoding and decoding processes are
computationally intensive. Moreover, it has been shown that
the Vandermonde matrix, based on the elements taken from
the finite GF, is not always nonsingular [13-15].

In the rest of the paper we deal with the processing of
packets; however, some of the concepts involved are very
close to symbol processing in FEC codes. Therefore, we will
follow commonly accepted symbols and terms to denote
corresponding operations.

3. Vandermonde Matrix-Based Binary
Erasure Code Design

In this section, we present a code design using a coeffi-
cient matrix P, based on the Vandermonde matrix, which
(i) results in computationally efficient processing of long
packets, and (ii) possesses the desired properties when per-
forming the decoding procedure in the proposed MDS code
using (4). We choose the a, elements in the Vandermonde

matrix as in (5) to be x%, for z = 0,...,r — 1, where x* - M;
stands for a right arithmetic shift operator by z bits applied
to the row information packet M;, i = 1,..., k represented in

bits from now on. Therefore, the coefficient matrix, P, in our
code is given by:

11 1 1 T
1 ! X2 ... xk—1
2 4 2(k=1)
v=|l x x b) (6)

_1 xrfl xZ(r—l)

To ensure that this Vandermonde matrix, consisting of
the arithmetic shifts operators x?, when applied to the
information packets, results in packets that can be recovered,
the packet size has to be increased by at least (r — 1)(k — 1)
over the original information packet size £ by zero padding
these packets to the size of ps = £ + (r — 1)(k — 1) [4].
This packet size ensures that the arithmetic shifts implement
delay (not cyclic shifts). Therefore, the overall effective
rate for (n,k, dmin) code is (k - &£)/(n - ps). For example,
when applying the proposed design to Ethernet frames with
transmission units of 1500 bytes and using the code (10, 5, 6),
the effective code rate is (5 - 1500)/(10 - 1502) = 0.4993
which is close to the conventional rate 1/2 of this code. With
the proposed coefficient matrix as in (6), based on (2) and
(4), the encoding process and packet loss recovery process
in the proposed codes are described in Sections 3.1 and 3.2,
respectively.

3.1. Encoding Process. The Vandermonde-based matrix that
is augmented with the identity matrix (systematic code)
comprise the nxk generator matrix of the code which is given
by:

Tixk
G=||, 7)
Vixk
where V is the designed matrix. For the proposed (n,k,n —

k + 1) systematic MDS code, the encoder uses (2) and (7) to
get:

[Iixk T
1 1 1
1 k-1
1 x X M =P, (8)
1 xrfl . x(r—l)(kfl)
where P; (i = 0,...,n—1) are the n coded packets comprising

P, where the first k of them are the original information
packets. The remaining n — k packets are generated by
modulo-2 addition of all the k information packets after
a proper shift of each information packet. Because of
similarities with the construction of codewords in cyclic
codes [6], it is natural to interpret (8) as a system of
polynomial equations. In this system of algebraic equations,
with M; being represented as a polynomial M;(x), the
product x - M;(x) is a right shift, where x' - M;(x) is the
right shift by i bits. The addition of polynomials with binary
coefficients corresponding to bits in the packets is a modulo-
2 addition. For brevity of notation, we will use M; to describe
the polynomial representation of a packet.

As compared to conventional encoding processes based
on (1) and (2), the encoding process in (8) is fast and
efficient because it uses just shifting and modulo-2 addition
operations of packets. This may benefit hardware imple-
mentation of the proposed packet coding or, in software
implementation, reduce the number of memory accesses.
Because of the invertibility properties of the Vandermonde
matrix and its submatrices concatenated with the identity
matrix, when we get any k coded packets out of # transmitted
ones, all the original k information packets can be recovered,
at the receiver side [13]. Therefore, the minimum distance
of such code is dmin, = n — k + 1, which is an MDS code
with a small overhead because each packet is padded with
(r — 1)(k — 1) zeros. These codes can correct for t = | (diin —
1)/2] = | (n — k)/2] errors or e = dpin — 1 = n — k erasures

[1].

3.2. Decoding Process. Initially we assume that the packet
is either received correctly or lost. Assume that out of
the received packets, some are information packets P;,
indexed by i, € [0,k — 1] and some are parity packets
Py, indexed by p, € [k,n — 1]. If the total number of
packets received is greater than or equal to k, k of these

4 EURASIP Journal on Wireless Communications and Networking

packets, including all the received information packets, are
used to construct the vector PF in (4). The submatrix GF
is obtained from the generator matrix G by knocking off
the rows of G corresponding to packets not used or lost
during transmission. Moreover, since some of these received
k packets are information packets, their corresponding rows
and columns in G* can be removed so that one would be
calculating only the missing information packets ML, As
opposed to (4), this can be accomplished using the reduced
system of equations given by:

Mt = (6t) - (B),)

where (L < k) and P! is the received parity packet after
substituting properly for the received information packets
excluded from the recovery. Essentially, G! can be any square
submatrix of V. When V is a square matrix, the number of
individual L X L submatrices is calculated using the following:

- k
y = L) (10)

The subsystem of equations in (4) or (9) always has

a unique solution, or simply (GK)™" is invertible, because
of the geometric progression nature in each row of the
Vandermonde matrix when the elements are the shift
operators. Even though this is not a formal proof for the
invertibility of (GK)™', we verified this, by simulation, for a
large set of parameters n and k [4].

4. Efficient Implementations of the Design

In this section, we present a two-step efficient implemen-
tation for recovering the lost packets MF or equivalently

finding (GL)71 in (9). At the receiver side, from (9), we get:

ﬁ (adjG) - P = M, (11)
where adjG! is the adjoint matrix of G, which is the
transpose of the minors of Gl since the cofactor matrix
equals the minors matrix in the binary field. To find MZ, the
adjGL must be found first, multiplied by PZ, and then the
result is divided by |GF|. A basis for the proposed two-step
procedure to find M’ is an equivalent representation of (11)
written as:

(adiGt) - P* = |GH| - Mt (12)

Therefore, the first step in finding M’ is to solve the LHS of
(12) which is essentially finding the adjG’ efficiently. Since
the elements of the adjoint matrix are polynomials (shifts)
with coefficients from the binary field, it is not that complex
to calculate the LHS of (12). The RHS of (12) dictates that
the result obtained from the LHS is M" multiplied by |G!|.
Therefore, the second step in finding M* is to extract M*
efficiently from the result in the first step.

Next, we will show how to find the adjG" and |G| which
comprise the matrix inverse and then how to extract ML,

4.1. Efficient Calculation of Matrix Inverse. The most expen-
sive operation in the recovery of M! is to find the
determinant and the adjoint matrix of G! which is any
submatrix of V. As explained in Section 2, the elements of the
adjoint matrix can be found using the determinants of the
submatrices of GL. Therefore, finding a way to calculate the
determinants results in computing the inverse. Although the
original Vandermonde matrix has a known formula to find
its determinant and its adjoint matrix, most of the submatri-
ces are no longer Vandermonde matrices and such formulas
donot apply to them. We present an efficient way to find the
inverse of any submatrix of V. This method arises because
our elements in the Vandermonde matrix are monomials
(single term polynomials) representing shifts. Therefore, we
are actually interested in the powers of the elements in
the designed matrix and submatrices. We demonstrate the
principle for calculating underlying matrices inverse in the
case of V. By applying the logarithmic operator to each
element of V and removing the common factor log(x), we
get the required shifts (monomials order representation) as
follows:

[0 0 0 0]

0 1 2 k-1

0 2 4 2k=1) | (13
10 r—1 2(r—1) --- (r=1)(k—1) |

To find the required determinants, we apply the permutation
technique [16]: write down all permutations of (1,...,1),
denoted by {P,(I)} of cardinality I!, where ! represents fac-
torial operator and take each permutation as the subscripts
of the letters a, b, ... which are the rows of the matrix and
sum with signs determined by (fl)y(p'(m, where y(p,(I)) is
the number of permutation inversions in P,(I). However, we
donot need the permutation inversions since in the binary
field the digits 1 or —1 are both 1. For example, with [= 3,
the permutations and the number of inversions they contain
are 123(0), 132(1), 213(1), 231(2), 312(2), and 321(3), so the

ap a as
by by b3
cl € C3

asbic; — asbycy) which is equivalent to (a;bycs + ajbsc, +
abics + axbscy + asbicy + asbycr) in the binary field. When
working with matrices of monomial elements, after applying
the logarithmic operator, the determinant of the resultant
powers can be represented:

determinant of is (a1bycs—aibscy—arbics+ar by +

ay + bzf +c3, ap+ b3' +cy, ay+ by + ¢z,

(14)

ay +by +cy, ay+by+cy, ay+by+cy,

where (-)" represents the logarithmic value of (-). Therefore,
the determinant of (13) can be calculated in a simplified
way as in (14). This simplified procedure can be used
to calculate the determinant of any square matrix. The
routine in Algorithm 1 illustrates how to find the adjoint
matrix using the determinant technique in (14) for any
Vandermonde submatrix.

EURASIP Journal on Wireless Communications and Networking 5

Given

Gl; The L XL matrix of interest
Find

(G")'; The submatrix transponse

Then

End

P,; The permutations of (1,..., L —1) for (GL)

For the adjoint element in location (i, j) of (G*)'
Construct the (L —1) X (L—1) matrix by deleting row i and column j
Find the determinant using then technique that uses P,
The numbers with even multiples are canceled out
The numbers with odd multiple stay

ArLGoriTHM 1: A routine to find the adjoint matrix using the permutation technique.

Given
GL; The L XL matrix of interest
MS; MS= |GL|-ML where MY is unknown
MS; The packet at row in M®
M;; The packet at row in M*
ps; The packet size after padding with g
Find
g The vector of the powers of |Gt |in ascending order
Then
For m=1: ps
For k=2 : length (g)
Factor=g(k)—g(1)
J1=modulus(m—1, ps)
J2=modulus(Factor+m —1, ps)
M3 (1, J2+1) =x or (M3 (1, JI +1),M$(1, J2+1))
End
End
M,=Cyclically shift to the leftM$ with g(1)

ALGORITHM 2: A routine to extract M! from the product of M! with
IG".

4.2. Extracting the Information from the Information Modified
by the Determinant. After obtaining adjG* and |G!|, we can
calculate the LHS of (12). By doing that, we will obtain the
matrix with its rows dependent only on the corresponding
rows of ML. This dependence implies shifts and additions
determined by the |G|. To be able to find the M*, we modify
the condition that we pad the information packets with
(r—1)(k—1) zeros into padding with the maximum degree of
the determinant in the set of all Vandermonde submatrices,
denoted by gmax. This padding is actually greater than the
original padding since gmax > (r — 1)(k — 1). However, it will
not further decrease the effective rate of the code since this
extra padding can be done at the receiver side. Each unknown
packet in M! is found by sequential bit by bit recovery within
this packet by removing the effect of the previously found bit
as shown in Algorithm 2 [4].

The examples in Section 5.1 will clarify further the
proposed techniques in Sections 4.1 and 4.2.

5. Erasure Code Designs and Performance

In this section, we discuss some specific cases for the design
of erasure codes proposed in this paper. We demonstrate the
PLR reduction capability of these codes through analytical
calculations and simulation results for different code param-
eters.

5.1. Erasure Code Design. At the receiver side, we need to find
the inverse of any L X L submatrix of P where L < k. When
we receive only the parity packets, we need to find V~! which
is given by:

-1

11 1 X +xt P 4x
1
Vi=|1 x x? = xr+x o xt+1 K241,
x5+ x
1 x2 x* xX2+x x*+1 x+1
(15)

The elements of the adjoint matrix as given in the RHS
of (15) can be found by running the algorithm described
previously. In this algorithm, in Step I, we apply the
logarithmic operator of the matrix and remove the common
factor logx, while in Step II we calculate the determinants
with polynomial powers represented in parenthesis (-, -) as
follows:

11 1 000
Step I

adj|1 x x? te:P,adjOIZ

1 x* x* 024

(5,4) (4,2) (2,1)
0 (42) (4,00 2,0].

(2,1) (2,0) (1,0)

For example, the element (5,4) is found by calculating the
determinant after crossing the first row and the first column
of V and then applying (14) but for the resulting 2 x 2
matrix. Itis (4 +1 = 5,2+ 2 = 4). To find the determinant
which is the denominator polynomial in (15), we gather the
elements of any row or any column of the adjoint matrix after

6 EURASIP Journal on Wireless Communications and Networking

Post decoding packet loss rate (PLR)

1075 L
100 107! 1072

Pre decoding erasure rate p

—o— Code rate = 2/4
—— Code rate = 5/7
—— Code rate = 12/14

FIGURE 1: Packet loss rate for systematic codes with dpin = 3.

adding to them their corresponding original powers (shifts)
which appear in the middle term in (16). Then, any number
(including zero) with even multiples is canceled out and any
number (including zero) with odd multiples stays because we
operate in the binary field. For example, by considering the
second row in the RHS of (16), we add to the elements their
corresponding powers which are 0, 1, and 2, respectively,
and then we gather them to be (4,2,5,1,4,2). Then, 4 and
2 are canceled out because they have even multiples, and 5
and 1 stay because they have odd multiples. This results in
(5,1) which is the power of the determinant shown in the
denominator polynomial in (15). By applying this principle,
any submatrix can be inverted by simple additions only.

The choice for the parameters of the proposed code is
quite flexible. For example, we can design the code (5,2,4)
having a rate of 2/5. By receiving any two packets, we can
recover the remaining three packets. Another example is the
code (5,3,3) having a rate of 3/5. By receiving any three
packets, we can recover the remaining two packets.

5.2. Simulation Results. This section shows post decoding
packet loss recovery performance, PLRpost, of the proposed
codes for a wide range of raw PLR in the network. As
discussed earlier, we assume that we either receive the
bits/packets correctly or they are missing (in doubt).

The presented results are obtained through the sim-
ulations of the actual encoding, network packet loss and
decoding processes. The PLR recovery simulation results
are plotted using continuous unmarked lines in all figures
in this section. For comparison purposes, we also plot the
theoretical curves using continuous marked lines based on
the following formula [6]:

1 @ NRC i n—i
PLRpostz ; Z 1()171(1_1?) > (17)

i=et1 \'!

10° :

Post decoding packet loss rate (PLR)
=
N

100 107! 1072
Pre decoding erasure rate p
o Theo: Code rate = 2/4

o Theo: Code rate = 2/6
A Theo: Code rate = 2/8

—— Sim: Code rate = 2/4
—— Sim: Code rate = 2/6
—— Sim: Code rate = 2/8

FIGURE 2: Packet loss rate for systematic codes with k = 2 but
different dy.

where p represents the raw PLR. The PLR performance is
independent of the actual packet length; however the latter
determines the percentage of overhead related to padding the
packets to the desired length determined by gmax. Also, since
the performance of the designed codes is characterized by the
minimum distance, it is not necessary to compare it with the
performance of other codes.

Figure 1 shows the PLR performance for three codes with
the same minimum distance of three and the same packet
size of 1000 bits but different code rates. The three codes
have the parameters (4,2,3), (7,5,3), and (14,12,3). The
rates of these codes are 2/4, 5/7, and 12/14, respectively. We
can observe that the performance improves as the code rate
decreases because the codes can recover two packets in a
group of n coded packets where n = 4,7,and 14.

Figure 2 shows the PLR performance for three codes with
different minimum distances and different rates. The three
codes have the parameters (4,2, 3), (6,2,5), and (8,2,7). The
rates of these codes are 2/4, 2/6, and 2/8, while the minimum
distances are 3, 5, and 7, respectively. We can observe that
the performance improves as the code rate decreases because
they can recover 2, 4, and 6 packets, respectively. We can
observe also that the theoretical PLR performances as given
by (17) agree with the simulation results.

6. Modified Erasure Designs

In this section, two modifications are introduced in order
to lower the amount of zero padding needed. In the first
modification, the shift elements are chosen and positioned
in the parity matrix P such that the determinant of the new
matrix U, replacing V, has a lower degree. A lower degree
determinant implies less zero padding for the packets and
hence a reduced overall overhead. The new parity matrix U is
such that all its submatrices are invertible. We show some of
the matrix designs for a number of different sizes. We prove

EURASIP Journal on Wireless Communications and Networking 7

that the new designed matrices and their submatrices are
invertible by finding the inverses using simulations. Also,
the maximum degree determinant is calculated for U. A
comparison to the same size Vandermonde-based designs is
shown.

6.1. Various Sizes Matrix Designs. The best design found that
satisfy the invertibility condition using exhaustive search for
the 3 x 3 matrix is

11 1
U=|[1 x «x*|. (18)
1 x* x

The matrix in (18) is a nonVandermonde matrix. The
invertibility of this matrix and its submatrices is proven by
using brute force simulations. This is done by finding all the
submatrices of (18) and calculating the determinants of these
submatrices. For this matrix, we found inverses for one 3 x 3
matrix, nine 2 X 2 submatrices, and nine 1 X 1 submatrices.
The number of submatrices that have inverses complies with
the maximum number in (10), meaning that the design is
invertible for any submatrix. This design has a maximum
degree determinant of four compared to its corresponding
Vandermonde matrix design which has a maximum degree
determinant of five.

The two designs

11 1 1 1
i)lcxlzxt 1 x x> x> x*
L2 ot a6 1 x2 x* x0 8 (19)
L ox 1 x* x0 x> x7

(1 x* x® x° x|

are good candidates for the parity coefficient matrices of
sizes 4 X 4 and 5 X 5, respectively. These two matrices are
nonVandermonde matrices and invertible. The 4 X 4 design
has a maximum degree determinant of 11 compared to
its corresponding Vandermonde matrix design, which has
a maximum degree determinant of 14. The 5 x 5 design
has a maximum degree determinant of 21 compared to its
corresponding Vandermonde matrix design, which has a
maximum degree determinant of 30.
For the 6 x 6 matrix, the best design found is given by

11 1 1 1 1
1 x x* x* x* x°
1 x* x x° x% x!0
v= 1 2 x° x x° &8 (20)
I xt %8 % % «x
11 x° x10 x® x x0 |

The matrix in (20) is also a nonVandermonde matrix.
For each square size matrix, Table 1 shows the number
of submatrices, the maximum degree determinant among

TaBLE 1: The Maximum Degree Determinant in 6 X 6 Matrix
Design.

Vandermonde nonVandermonde # of Submatrices
1x1 25 10 36
2X2 41 20 225
3X3 50 26 400
4 x4 54 32 225
5X%X5 55 33 36
6 X6 55 33 1

them, and a comparison with the corresponding same size
Vandermonde design. The number of submatrices having
inverses complies with the maximum number in (10). This
design has a maximum degree determinant of 33 compared
to its corresponding Vandermonde matrix design, which has
a maximum degree determinant of 55.

Higher dimension matrices can also be designed and
found in the same manner by generating the elements of the
required size matrix and then testing the invertibility of each
submatrix using brute force simulation.

The second modification that also will reduce the
amount of zero padding is to zero pad with the maximum
shift in the designed matrix, not with the maximum degree
of the determinant. At the encoder side, each packet will
be padded with the maximum shift in the matrix. Then
at the receiver side, before starting decoding, the received
packets are extra padded with zeros to make the total
number of zero padding equal to the maximum degree
determinant. This reduces the amount of overhead in the
transmitted packets. This modification applies for any design
(Vandermonde or nonVandermonde), and the advantages
benefit equally both modifications. For example, for a 6 X 6
Vandermonde matrix, 55 zeros are needed originally, while
only 25 zeros are needed if we adopt the second modification,
since the maximum shift in the Vandermonde matrix design
is 25. For a 6 X 6 nonVandermonde matrix, 33 zeros are
needed originally, while only 10 zeros are needed if we adopt
the second modification, since the maximum shift in the
nonVandermonde matrix design in (20) is 10.

6.2. Simulation Results. This section shows post decoding
packet loss recovery performance, PLRos, of the modified
nonVandermonde codes for a wide range of raw PLR in the
network. For comparison purposes, the performance of the
corresponding Vandermonde based designs are also plotted.

Figure 3 shows the PLR performance for five codes
with different minimum distances, but the same code rate
of 1/2 and the same packet size of 1000bits. The five
codes have the parameters (4,2,3), (8,4,5) Vandermonde-
based, (8,4, 5) nonVandermonde based (Modified), (12,6, 7)
Vandermonde-based, and (12, 6,7) nonVandermonde based
(Modified). The minimum distances are 3, 5, and 7, respec-
tively. By receiving any k packets, each code can recover
the remaining r = k packets. As the channel condition
improves, the code with higher parameters outperforms the
others since it can recover more packets. This is the reason

8 EURASIP Journal on Wireless Communications and Networking

that the performance improves as the minimum distance
of the code increases. Also, we observe that the modified
designs (nonVandermonde) and the original designs (Van-
dermonde) have identical performances.

7. Error Correction Capability and Performance

In this section, the general error correction capability and
the decoding process using the designed codes are presented.
An error decoding technique capable of correcting a single
erroneous packet irrespective of the number of errors in
this packet is presented. We demonstrate the packet error
rate (PER) reduction capability of these codes based on the
proposed error decoding technique through analytical calcu-
lations and simulation results for different code parameters.

We assume here that there is no packet loss. Therefore,
at the receiver, all the coded packets P are received. From the
received packets arranged row-wise in a matrix R, we have to
infer first which packet(s) is(are) in error, and then, within
this(these) packet(s), where the error locations are and their
values. For binary codes considered in this paper, the error
values are not required, since by knowing their positions, one
just flips them. There are many procedures that could correct
for errors by observing R. A typical way is to use syndrome
decoding which proceeds by finding the parity check matrix
H. The parity check matrix, H, of G in (7) is the n X r matrix
given by

Vieer
H=|---|, (21)

IT’XT

where V' is the transpose of V. Accordingly, the multiplica-
tion of the two partitioned matrices, H and G gives the zero
matrix.

Now assume that the n coded packets arranged in P
are transmitted and they are corrupted by errors. The
received packets can be viewed as the coded packet corrupted
(modulo-2 added) with packets having 1’s in the error
locations. These packets are referred to as error packets and
are arranged row-wise in E, where the latter is a column
vector consisting of the elements E;, i = 0,...,n — 1. The
received packets arranged in the matrix R are given by

C Py] E]
R=P+E=|Pi1 |+ |Ex1 |, (22)
Pnfl _Enfl_

where R is a column vector consisting of the received packet
R; (i=0,...,n—1). By pre-multiplying (22) by H', one gets
the packet syndrome denoted by S as follows:

S=H -R=H -E (23)

If S#0, we have the indication that there were errors
during the transmission. It is observed that this syndrome
decoding technique in (23) depends only on the error
patterns, E, but not on the transmitted coded packets, P. The
syndrome decoding technique enables the code to correct for
t packet(s) irrespective of the number of bits in error inside
the packet(s). A packet is considered in error if at least one
bit of the packet is in error.

We show next how the syndrome decoding is utilized
to correct a single erroneous packet in a group of n
received packets. Extending the technique to correct for more
erroneous packets needs further study and is beyond the
scope of this paper.

For the MDS codes capable of correcting single erroneous
packet out of n packets, dmin = n — k + 1 = 3; that is,
r = 2 and thus n = k + 2. Now we pre-multiply the resultant
syndrome equation in (23) by the matrix Q, which is the
column-wise reverse of H [4]. We call the resultant matrix,
the error locator matrix W, which is given as follows:

W=Q- -H -E, (24)
where

((V,)Cr)er
Q-m=| - (25)
(D) s

and ()" represents column-reversed matrix. By substituting
(25) in (24), one gets (26):

(V) kxr

' [erk : 1] B
(DF) 1y

(V)5 koer

) Vr><k : ((V,)Cr)er . Ir><r
(26)

((I)Cr)rxr . V"Xk ((V)Cr)rxr : Ir><r

((V')Cr)kxz - Vouk ((V,)Cr)kxz

((V)rr)2><k ((I)Cr)2><2

where (-)" represents row-reversed matrix. By carrying out
the calculation in (26), one gets (27)

EURASIP Journal on Wireless Communications and Networking 9

0 1+x 1+x1 1 1 1
x+1 0 x + xk-2 x 4 xk-1 x 1
xr 1 [Eo]
E,
X241 a2 4 xK=2 4 k-1 E
W= 2 (27)
K141 xF=1 4 xk-2 0 xk-1]
Ek+1
1 X x2 xk-1 0 1
B 1 1 1 10 |

From (27), we observe that the diagonal elements of Q - H’
are zeros. This means that if all the error packets are zeros
except one error packet E;, the only all-zero row in W will
be the row W;, where i € [0,n — 1]. Also, we notice that E;
corresponds to the last row in the error locator matrix W.
This is true except for the last one E; = E,_1 = Ej41, in which
case any row in the error locator matrix is the error packet.

We would like to mention that the above technique needs
more careful processing to handle the scenario that the error
packet and a shifted version of it produce the same packet
such as the all-ones error packet. Although the occurrence of
such scenario is extremely small, especially for long packets,
it can be handled by padding the packets resulting from the
syndrome equation with (r — 1) - (k — 1) zeros and then
discarding these zeros when finding the error packet. These
zeros are not counted as an overhead since they are padded
at the receiver side.

7.1. Error Correction Designs. In this section, we discuss some
specific cases for the design of packet-level error correction
codes proposed in this paper. First, we consider the (4,2, 3)
systematic code and present the decoding process without
using W, and then we demonstrate the benefits of error
locator matrix in this example. This code is capable of
correcting one packet in error out of the received four
packets. The generator and the parity check matrices are

10 11
G = [(1) }} and H = [} ’6}, respectively. At the receiver
1x 01
side, the decoding process starts by applying the syndrome
decoding in (23) to get the following:

(28)

Ey+E +E;
S=H -E= .

Ey+xE, + E;

From (28), if the error occurs in the first received packet Ry,
the only packet that is not all-zero is Ey while E; = E, =
E; = 0. Therefore, the two packets comprising the syndrome
matrix S, in (28), are identical and are the error packet, Ey,
itself. To correct the erroneous packet Ry, one adds to it one

of the packets obtained from the syndrome calculation. If the
error occurs in the second received packet R;, the second
packet of the syndrome is a shifted version by one of the
first packet in the syndrome. To correct the erroneous packet
Ry, add it to the first packet E; of the syndrome matrix. If
the error occurs in the third received packet R,, the second
packet of the syndrome is the all-zero packet, while the first
packet in the syndrome is the error packet E,. To correct
the erroneous packet R, add to it the first packet of the
syndrome matrix. If the error occurs in the fourth received
packet R3, the second packet of the syndrome is the error
packet E; while the first packet is the all-zero packet. To
correct the erroneous packet Rs, add it to the second packet
of the syndrome matrix.

The above correction can be done more efficiently by
finding the error locator matrix W using (24). By pre-
multiplying the resultant syndrome equation in (28) by Q,
W is found to be

Ey+E +E;
w=Q-

Ey+xE + E;
11 Ei+xE{+E, +E;
x 1 Ey+E +E; xEy + Ey + xE, + E5
a 01 . Ey+xE, + E3 a Ey+xE + E3
10 Ey+E +E;

(29)

The above error locator matrix reduces to the first, second,
third, or fourth column in Table 2 when the packet in error
is the first, second, third, or fourth one, respectively. For
example, if the packet in error is the fourth received packet
Rs, E; will be nonzero packet while Ey = E; = E, = 0.
Therefore, based on (29), W reduces to the fourth column
in Table 2. This means that if we get W with the last row
comprised of all-zeros, we decide that the erroneous packet is
the fourth one. In this case, E3 can be taken either as the first,
second, or third packet in the fourth column of W. When the
packet in error is the first, second, or third one, we notice as

100E . ———

Post decoding packet loss rate (PLR)
=
b
T

10° 107! 10-2
Pre decoding erasure rate p

—— Code rate = 2/4

—o— Vandermonde: Code rate = 4/8
Modified: Code rate = 4/8

—— Vandermonde: Code rate = 6/12
Modified: Code rate = 6/12

FIGURE 3: Packet loss rate for systematic codes with the same code
rate of 1/2 but different dp;p.

before that the zero in the error locator matrix indicates the
location of the packet in error and the error packet can be
taken as the last packet in the error locator matrix in Table 2.

The (5, 3, 3) systematic code is capable of correcting one
packet in error out of the received five packets. By following
the procedure from (26), the error locator matrix W for this
code is as follows:

Ey+E +E, +Es
W = .
Ey + xE; +X2E2 +E4
SRS
x 1
Ey+E{+E, +E;
=|x* 1 ,
] Ey + xE; +x2E2 + E4
(30)
E1+xE1+E2+x2E2+E3+E4
xEy+ Ey + xE, + x2E2 +xE; +E,
W = X2E0+E0+X2E1+XE1+X2E3+E4 .
Ey + xE; +X2E2 +E4
Ey+E,+E,+E;

The above error locator matrix reduces to the first, second,
third, fourth, or fifth column in Table 3 when the packet
in error is the first, second, third, fourth, or fifth one,
respectively, in a block of 5 received packets. We notice as
before that the zero in the error locator matrix indicates the
location of the packet in error. Also, the error packet that
should be added to correct the erroneous packet is the last
row in the error locator matrix. This is true except when the

EURASIP Journal on Wireless Communications and Networking

TaBLE 2: The error locator matrix, W, for a single packet in error
for the (4, 2, 3) systematic code.

Ry in error R, in error R, in error R; in error
W W W W
0 E, + xE, E, E;
xEy + E, 0 xE, E;
E, xE, 0 E;
Ey E, E, 0

TaBLE 3: The error locator matrix, W, for a single packet in error
for the (5,3, 3) systematic code.

Ry in error R, in error R, in error Rj in error Ry, in error
w w w w w
0 E, + xE, E, + X*E, E; E,
xEy + E, 0 xE, + x*E, xE; E,
x*Ey+E, x*E, +xE; 0 x%E; E,
E, xE, x2E, 0 E.
Ey E, E, Es 0

last received packet is in error, in which case any row in the
error locator matrix is the error packet.

We discussed two codes (4,2,3) and (5, 3,3) which are
both single error correcting code like the (7,4, 3) Hamming
code. However, the rates of these three codes are 35/70, 42/70,
and 40/70, respectively. The decoding process for the first
code is simple, but the code has a rate of 0.5. The decoding
process of the second code is a little bit more involved
compared to the first one, but the code has a higher rate of
0.6. Higher rate single error correcting codes can be designed,
but the decoding complexity increases slightly as the code
rate increases.

We presented an efficient decoding algorithm to correct
a single erroneous packet in a family of codes having a
minimum distance of three. Therefore, this family is capable
of correcting all bits in error within a single erroneous packet,
irrespective of the size of the packet. The family has the
parameters (k + 2, k, 3), where k > 2. The rate of this family
is k/(k + 2). This designed family has more flexible code
parameters when compared to the family of Hamming codes
having the parameters (2" — 1,2™ — m — 1, 3), where m > 3.
The next Hamming code after the (7,4, 3) is the (15,11, 3)
which has a code rate of 11/15 = 0.733. A comparable code
performance in our design is when taking k = 6 to construct
the code (8,6, 3) having a code rate of 6/8 = 0.75. However,
the latter is less complex since it has a code length of 8, which
is almost half of the Hamming code of length 15. As a result,
the delay in constructing the encoder and decoder matrices
is greatly reduced, especially as the code rate increases.

7.2. Simulation Results. This section shows postdecoding
packet error rate performance, PER,os, of the proposed
codes for a wide range of raw PER in the network.

The presented results are obtained through the simu-
lations of the actual encoding, network packet error and

EURASIP Journal on Wireless Communications and Networking 11

Post decoding packet error rate (PER)

1074 L L Ll

10° 107! 1072
Pre decoding error rate p

0 Theo: Coderate = 2/4 ~ —— Sim: Code rate = 2/4
o Theo: Code rate = 5/7 —— Sim: Code rate = 5/7
A Theo: Code rate = 12/14 —— Sim: Code rate = 12/14

FIGURE 4: Packet error rate for systematic codes with dp, = 3.

decoding processes. The PER recovery simulation results are
plotted using continuous unmarked lines. For comparison
purposes, we also plot the theoretical curves using continu-
ous marked lines based on (17) but taking the summation
from ¢ + 1 with t = 1 instead of e + 1 and p representing here
the raw PER.

Figure 4 shows the PER performance for three codes with
the same minimum distance of three but different code rates.
The three codes have the parameters (4,2,3), (7,5,3), and
(14,12, 3). The rates of these codes are 2/4, 5/7, and 12/14,
respectively. We can observe that the performance improves
as the code rate decreases because the codes can correct
for one packet in a group of n coded packets where n =
4,7,and 14. Also, it can be noted that the theoretical PER
performances agree with the simulation results.

8. Conclusion

We summarize now the advantages of working with the
proposed code design for packet-level FEC in which the
elements of the Vandermonde matrix are the shift operator.
The code design is applicable to recover from lost packets up
to n — k out of the n coded packets, or correct one erroneous
packet out of the n received packets. This design is simple to
implement since all our arithmetic operations are done in the
binary field using only simple shifts and modulo-2 additions.
The only disadvantage is the overhead associated with
the need to zero pad each packet with the maximum degree,
Zgmax, Of the determinants among the set of all determinants
of square submatrices of the designed Vandermonde matrix.
To reduce the overhead considerably, however, we proposed
modified nonVandermonde matrix designs which were
found by exhaustive search. We believe that finding such
designs in more structured way is still a challenging problem
especially as the matrix size increases. To even further reduce
this overhead in both designs, we can only zero pad with the
maximum shift in the matrix which is much less than gmay.

The overhead reduces the efficiency of the design (overall
code rate) especially when designing for large code param-
eters. However, as the packets size increases, the efficiency
improves. Therefore, the design is applicable to packets of
any size provided that they are not very small. For moderate
code parameters, packets of few hundred bits (all network
standards requires even more than this) are good enough
that will not affect the efficiency of the code very much.
For large code parameters, the efficiency can be improved by
increasing the packet size and/or by utilizing the mentioned
ways of reducing the overhead.

For erasure recovery, we showed how to find the inverse
of a matrix using a simple algorithm by exploiting the
logarithmic operator of the elements of the Vandermonde
matrix and converting the operations to simple modulo-2
additions. For error correction, we presented a syndrome
decoding algorithm that corrects for a single erroneous
packet using a specialized error locator matrix. The design
is suitable for real-time applications and multicasting, where
conventional ARQ protocols employing retransmission are
inadequate, due to the introduction of delay and jitter. Also,
the design can be exploited in cross-layer protocols design to
recover from both erasures and errors simultaneously.

Acknowledgment

The authors acknowledge the support of King Fahd Univer-
sity of Petroleum and Minerals (KFUPM).

References

[1] D. J. Costello, J. Hagenauer, H. Imai, and S. B. Wicker,
“Applications of error-control coding,” IEEE Transactions on
Information Theory, vol. 44, no. 6, pp. 2531-2560, 1998.

[2] M. G. Luby, M. Mitzenmacher, M. A. Shokrollahi, and
D. A. Spielman, “Efficient erasure correcting codes,” IEEE
Transactions on Information Theory, vol. 47, no. 2, pp. 569—
584, 2001.

[3] S. Karande and H. Radha, “Partial Reed Solomon codes for
erasure channels,” in Proceedings of the IEEE Information
Theory Workshop (ITW ’03), pp. 82—85, April 2003.

[4] A. Al-Shaikhi, Innovative designs and deplyments of erasure
codes in communication systems, Ph.D. dissertation, Dalhousie
University, Nova Scotia, Canada, 2007.

[5] R. L. Collins and J. S. Plank, “Assessing the performance
of erasure codes in the wide-area,” in Proceedings of the
International Conference on Dependable Systems and Networks
(DSN °05), pp. 182—-187, Yokohama, Japan, June 2005.

[6] S.Lin and D. J. Costello, Error Control Coding, Prentice-Hall,
Upper Saddle River, NJ, USA, 2004.

[7] S. S. Karande and H. Radha, “The utility of hybrid error-
erasure LDPC (HEEL) codes for wireless multimedia,” in
Proceedings of the IEEE International Conference on Commu-
nications (ICC’05), vol. 2, pp. 12091213, Seoul, South Korea,
May 2005.

[8] A. Al-Shaikhi, J. Ilow, and X. Liao, “An adaptive FEC-
based packet loss recovery scheme using RZ turbo codes,” in
Proceedings of the 5th Annual Conference on Communication
Networks and Services Research (CNSR °07), pp. 263-267,
Fredericton, Canada, May 2007.

12 EURASIP Journal on Wireless Communications and Networking

[9] A. A. Al-Shaikhi and J. Tlow, “Packet loss recovery codes based
on Vandermonde matrices and shift operators,” in Proceedings
of the IEEE International Symposium on Information Theory
(ISIT °08), pp. 1058-1062, Toronto, Canada, July 2008.

[10] E J. Ayres, Schaum’s Outline of Theory and Problems of
Matrices, Schaum, New York, NY, USA, 1962.

[11] A. Ben-Israel and T. N. Greville, Generalized Inverses: Theory

and Applications, Wiley Interscience, New York, NY, USA,

1977.

D. S. Dummit and R. M. Foote, Abstract Algebra, Prentice-Hall,

Englewood Cliffs, NJ, USA, 1998.

J. Lacan and J. Fimes, “Systematic MDS erasure codes based on

Vandermonde matrices,” IEEE Communications Letters, vol. 8,

no. 9, pp. 570-572, 2004.

[14] J. Fimes, J. Lacan, et al., “Estimation of the number of singular
square submatrices of Vandermonde matrices defined over a
finite field,” Tech. Rep. RE-2003-01, ENSICA, January 2003.

[15] E. MacWilliams and N. Sloane, The Theory of Error-Correcting

Codes, North Holland, Amsterdam, The Netherlands, 1978.

T. Muir, Treatise on the Theory of Determinants, Dover Phoenix

Editions, New York, NY, USA, 1960.

[12

(13

(16

	1. Introduction
	2. Linear Block Codes in Packet-Level FEC
	3. VandermondeMatrix-Based Binary Erasure Code Design
	4. Efficient Implementations of the Design
	5. Erasure Code Designs and Performance
	6.Modified Erasure Designs
	7. Error Correction Capability and Performance
	8. Conclusion
	Acknowledgment
	References

