
Hindawi Publishing Corporation
EURASIP Journal on Wireless Communications and Networking
Volume 2009, Article ID 945943, 13 pages
doi:10.1155/2009/945943

Research Article

Mobility and Cooperation to
Thwart Node Capture Attacks inMANETs

Mauro Conti,1 Roberto Di Pietro,2, 3 Luigi V. Mancini,4 and AlessandroMei4

1Department of Computer Science, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
2UNESCO Chair in Data Privacy, Universitat Rovira i Virgili, 43700 Tarragona, Spain
3Dipartimento di Matematica, Università di Roma Tre, 00146 Roma, Italy
4Dipartimento di Informatica, Università di Roma “Sapienza”, 00198 Roma, Italy

Correspondence should be addressed to Mauro Conti, conti@di.uniroma1.it

Received 22 February 2009; Revised 13 June 2009; Accepted 22 July 2009

Recommended by Hui Chen

The nature of mobile ad hoc networks (MANETs), often unattended, makes this type of networks subject to some unique security
issues. In particular, one of the most vexing problem for MANETs security is the node capture attack: an adversary can capture
a node from the network eventually acquiring all the cryptographic material stored in it. Further, the captured node can be
reprogrammed by the adversary and redeployed in the network in order to perform malicious activities. In this paper, we address
the node capture attack in MANETs. We start from the intuition that mobility, in conjunction with a reduced amount of local
cooperation, helps computing effectively and with a limited resource usage network global security properties. Then, we develop
this intuition and use it to design a mechanism to detect the node capture attack. We support our proposal with a wide set
of experiments showing that mobile networks can leverage mobility to compute global security properties, like node capture
detection, with a small overhead.

Copyright © 2009 Mauro Conti et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. Introduction

Ad hoc network can be deployed in harsh environments to
fulfil law enforcement, search-and-rescue, disaster recovery,
and other civil applications. Due to their nature, ad hoc
networks are often unattended, hence prone to different
kinds of novel attacks. For instance, an adversary could
eavesdrop all the network communications. Further, the
adversary might capture (i.e., remove) nodes from the
network. These captured nodes can then be reprogrammed
and deployed within the network area, for instance, to
subvert the data aggregation or the decision making process
in the network [1]. Also, the adversary could perform a
sybil attack [2], where a single node illegitimately claims
multiple identities also stolen from previously captured
nodes. Another type of attack is the clone attack, where the
node is first captured, then tampered with, reprogrammed,
and finally replicated in the network. The former attack can
be efficiently addressed with mechanism based on RSSI [3]
or with authentication based on the knowledge of a fixed key

set [4], while recent solutions have been proposed also for the
detection of the clone attack [5, 6].

To think of a foreseeable application for node capture
detection, note that recently the US Defense Advanced
Research Projects Agency (DARPA) initiated a new research
program to develop so-called LANdroids [7]: Smart robotic
radio relay nodes for battlefield deployment. LANdroid
mobile nodes are supposed to be deployed in hostile
environment, establish an ad-hoc network, and provide
connectivity as well as valuable information for soldiers that
would later approach the deployment area. LANdroids might
retain valuable information for a long time, until soldiers
move close to the network. In the interim, the adversary
might attempt to capture one of these nodes. We are not
interested in the goals of the capture (that could be, e.g.,
to reprogram the node to infiltrate the network, or simply
extracting the information stored in it); but on the open
problem of how to detect the node capture that represents,
as shown by the above-cited examples, a possible first step to
jeopardize an ad hoc network. Indeed, an adversary has often

2 EURASIP Journal on Wireless Communications and Networking

to capture a node to tamper with—that is, to compromise
its key set, or to reprogram it with malicious code—before
being able to launch other more vicious, and may be still
unknown, attacks. Node capture is one of the most vexing
problems in ad hoc network security [8]. In fact, it is a very
powerful attack and its detection is still an open issue. We
believe that any solution to this problem has to meet the
following requirements: (i) to detect the node capture as
early as possible; (ii) to have a low rate of false positives—
nodes which are believed to be captured and thus subject to a
revocation process, but which were not actually taken by the
adversary; (iii) to introduce a small overhead.

The solutions proposed so far are not satisfactory as
for efficiency [8]. Also, while naı̈ve centralized solutions
can be applied to generic ad-hoc networks, they presents
drawbacks like single point of failure and nonuniform
energy consumption. These drawbacks do not make them
appealing for ad hoc networks. Moreover, these networks
often operates without the support of a base station. Efficient
and distributed solutions to the node capture attack are of
particular interest in this context.

To the best of our knowledge, there are no distributed
solutions for the problem of detecting the node capture
attack in Mobile Ad Hoc Networks (MANETs). Following
a new interesting research thread that focuses on leveraging
mobility to enforce security properties for wireless sensor
and ad hoc networks [9, 10], we propose a new capture
detection framework that leverages node mobility. We show
that this approach can provide better performance compared
to traditional solutions. Also, we show that using node
cooperation in conjunction with node mobility can still
improve the capture detection performance within specific
network requirements.

The contribution of this paper is to provide a proof of
concept: it is possible to leverage the emergent properties
of mobile ad hoc networks via node mobility and node
cooperation to design a node capture detection protocol.
To this aim, we use the Random Waypoint Mobility Model
(RWM) [11], an ideal mobility model which is simple and
general enough (at least for some application scenarios) to
explore our ideas. Furthermore, the result on any particular
mobility model should depend not only from the model but
also from the network setting, as pointed out in [12] for the
delay-capacity tradeoff. Indeed, providing specific settings
and evaluations for other models is out of the scope of this
work.

Our solution is based on the simple observation that if
node a will not remeet node b within a period λ, then it
is possible that node b has been captured. This observation
is based on the fact that some time is required to the
adversary to tamper with a sensor node. The time required
by the adversary to perform such a type of attack was
not investigated in the context of sensor network, until the
work in [13]. In [13], the authors found out that node
capture attacks (that give the adversary full control over a
sensor node) are not so easy to implement, contrary to what
was usually assumed in literature—indeed, among other
requirements (e.g., expert knowledge and costly equipment),
node tampering requires the removal of nodes from the

network for a nonnegligible amount of time. In particular,
while short attacks such as using plug-in devices can be
performed in some 5 minutes, medium attacks that require
(de-)soldering requires more than 30 minutes, and long
attacks and very long attacks (e.g., erasing the security
protection bits by UV light or invasive attack on electronic
component) can require even some hours.

We will build upon this intuition to provide a protocol
that makes use of local cooperation and mobility to locally
decide, with a certain probability, whether a node has
been captured or not. Our proposed solution does not
rely on any specific routing protocol: we resort to one-hop
communications and to a sparing use of a message broad-
casting primitive. These distinguished features help keep
our protocol simple, efficient, and practically deployable,
avoiding the use of sophisticated routing that can introduce
complexity and overhead in themobile setting. Furthermore,
our experimental results demonstrate the effectiveness and
the efficiency of our proposal. For instance, for a given energy
budget, while the reference solution requires about 4000
seconds to detect node capture, our proposal requires less
than 2000 seconds. We remark that the solution proposed in
this paper is completely tunable: the capture detection time
can be set as small as desired. However, a smaller detection
time would imply an higher energy consumption.

The paper is organized as follows. Section 2 presents the
related work in this area. Section 3 introduces the motivation
and the framework of our proposal based on simple ad
hoc network capabilities like node mobility and message
broadcasting. Our specific proposal, the CMC Protocol, is
then presented in Section 4, while in Section 5 we discuss the
simulation results that give a qualitative idea of howmobility
and node cooperation can be leveraged in order to decrease
the node capture detection time. Finally, Section 6 reports
some concluding remarks.

2. RelatedWork and Background

Mobility as a means to enforce security in mobile networks
has been considered in [9]. Further, mobility has been
considered in the context of routing [14] and of network
property optimization [15]. In particular, the work in [14]
leverages node mobility in order to disseminate information
about destination location without incurring any commu-
nication overhead. In [15], the sink mobility is used to
optimize the energy consumption of the whole network. A
mobility-based solution for detecting the sybil attack has
been recently presented in [10]. Finally, note that a few
solutions exist for node failure detection in ad hoc networks
[16–19]. However, such solutions assume a static network,
missing a fundamental component of our scenario, as shown
in what follows.

In this work, we use node mobility to cope with the
node capture attack. As described in the following section, we
specifically rely on the meeting frequencies between honest
nodes to gather information about the absence of captured
nodes. A property similar to that of node “remeeting” has
been already considered in [20]. However, in [20], the

EURASIP Journal on Wireless Communications and Networking 3

authors investigate the time needed for a node to meet
(for the first time) a fixed number of other nodes. This
analysis is then used together with node mobility to achieve
noninteractive recovery of missed messages. To the best
of our knowledge no distributed solution leveraging node
mobility has been proposed to detect the node capture attack
in mobile ad-hoc and sensor networks.

While node capture attack is considered as major threat
in many security solutions for WSN, to the best of our
knowledge, it has not been directly addressed yet. However,
some interest has been shown in modeling the node capture
attack. In particular, in [21], both oblivious and smart node
capture is considered for the design of a key management
scheme for WSN. A deeper analysis on the modeling of
the capture attack has been presented [22, 23]. In [22], it
is shown how different greedy heuristics can be developed
for node capture attacks and how minimum cost node
capture attacks can be prevented in particular setting. In
[23], the authors formalize node capture attacks using the
vulnerability metric as a nonlinear integer programming
minimization problem.

We recently published [24, 25]; the former arguments
that mobility models have a relevant effect on the properties
of the proposed algorithms, while the latter is a short con-
tribution on the possibility to leverage network mobility for
node capture detection. In particular, in [25] we presented
the rationales for this type of approach and a preliminary
solution to the problem. However, while the results given
in [25] are encouraging, the specific solution proposed
requires a high overhead to bound the number of false
positives (wrongly revoked nodes). Note that, without this
bounding mechanism, the number of false positives would
be unacceptable. Furthermore, in [25] we did not study the
feasibility of the new approach compared with other ones. In
the present work, we leverage the intuition proposed in [25],
which is the “remeeting” time between nodes, to design an
efficient solution that leverages different levels of cooperation
between nodes. In particular, we introduce a presence-
proving mechanism used by allegedly captured nodes to
show their actual presence in the network (i.e., eliminating
the possibility of revoking a node which is present within
the network). Further, we introduce a reference solution in
order to quantify the quality of the proposed solutions. The
proposed solutions are compared between them and with the
reference solution. In particular, to have a fair comparison,
we observed the detection time provided by the different
protocols using the same energy budget. The result of our
study confirms the intuition provided in [25]. Furthermore,
it proves that within certain scenarios of node mobility, the
proposed solutions provide a sensitive improvement over
other possible approaches, such as the one based on classical
message exchange.

Node mobility and node cooperation in a mobile ad hoc
setting have been considered already in Disruption Tolerant
Networks (DTNs) [26, 27]. However, such a message passing
paradigm has not been used, so far, to support security. We
leverage the concept introduced with DTN to cooperatively
control the presence of a network node. Mobility to recover
the secret state of a node has been recently introduced in [28,

29]. In this paper, we use one of the most common mobility
patterns in literature, the RandomWaypoint Mobility Model
[11]. In this model, it is assumed that each node in
the network acts independently: it selects a geographic
destination in the deployment area (the way-point), it selects
a speed uniformly at random in a given interval [smin, smax],
and then it moves toward the destination on a straight
route at the selected speed. When at the way-point, it waits
for some time, again selected uniformly at random from
a given interval, and then the node repeats the process by
choosing the next way-point. Some researchers have shown
some problems related to this mobility model. One of the
problems is that the average speed of the network tends
to decrease during the life of the network itself and, if
the minimum speed that can be selected by the nodes is
zero, then average speed of the system converges to zero
[30]. In the same paper, it is suggested to set the minimum
speed to a value strictly greater than zero. In this case, the
average speed of the system continues decreasing, but it
converges to a nonzero asymptotic value. Other problems
related to spatial node distribution have been considered by
different authors [30, 31]. In the analysis presented in [14],
“human speeds” are claimed to be a reasonable practical
choice for mobile nodes. Note that the RWM might not
be the best model to capture a “realistic” mobility scenario,
as highlighted in [12]; however, the results achieved in this
paper are meaningful as they are a proof of concept that
mobility can be leveraged to enforce security properties; the
provided protocols could be used in, and adapted to, more
realistic mobility models.

In our proposed approach every node maintains its own
clock. However, we require that clocks among nodes are just
loosely synchronized. Note that there are a few solutions
proposed in literature to provide loose time synchronization,
like [32]. Therefore, in the following wewill assume that skew
and drift errors are negligible.

In our proposal, we also need to take into consideration
the cost of broadcasting a message to all the nodes in the
network. In [33], a classification of the different solutions
for broadcasting scheme is provided: (i) Simple Flooding;
(ii) probabilistic-based schemes; (iii) area-based schemes
that assume location awareness; (iv) neighbor knowledge
schemes that assume knowledge of two hop neighborhood.

Analyzing or comparing broadcasting cost is out of the
scope of this paper. However, for a better comparison of the
solutions proposed in this paper, we need to set a broadcast
cost that will be expressed in terms of unicast messages.
In fact, the overhead associated to the broadcasting varies
with different network parameters (e.g., node density and
communication radius). A deeper analysis on the overhead
generated for different broadcasting protocols is presented
in [34]. Also, note that probabilistic-based and neighbor-
based protocols require a big overhead for a mobile network
in order to know the network topology and neighbor-
hood, respectively. Furthermore, the same argument can
be considered for the localization protocol that is used in
the area-based schemes. In the following, to embrace the
more general case, we assume that nodes are not equipped
with localization devices, like GPS. Finally, note that a

4 EURASIP Journal on Wireless Communications and Networking

message could be received more than once, for instance,
because the receiver is in the transmission range of different
rely nodes. However, in the following, we assume that a
broadcasted message is received (then counted) only once
for each node. A similar assumption is used, for example, in
[34].

3. Node Capture Detection through
Mobility and Cooperation

The aim of a capture detection protocol is to detect as
soon as possible that a node has been removed from the
network. In the following, we also refer to this event as
a node capture. The protocol should be able to identify
which is the captured node, so that its ID could be revoked
from the network. Revocation is a fundamental feature—
if the adversary reintroduces the captured (and possibly
reprogrammed) node in the network, the node should not
be able to take part to the network operations.

In the following, we first describe a simple distributed
solution that does not exploit neither mobility nor coop-
eration among nodes; we use this solution as a reference
solution to compare with our proposal. Then, we introduce
the rationals we leverage to develop our protocol for node
capture detection, detailed in the following section.

3.1. Reference Solution. To the best of our knowledge, no
efficient and distributed solution leveraging mobility was
proposed so far to cope with the node capture detection
problem in Mobile Ad Hoc Network. However, a naı̈ve
solution that makes use of node communication capabilities
can be easily figured out. We first describe this solution
assuming the presence of a base station (BS); then, we
will show how to relax this assumption. In the BS-based
solution, each node periodically sends a message to the BS
carrying some evidence of its own presence. In this way, the
base station can witness for the presence of the claiming
nodes. If a node does not send the claim of its presence
to the BS within a given time range, the base station will
revoke the corresponding node ID from the network (e.g.,
flooding the network with a revocation message). To remove
the centralization point given by the presence of the BS,
we require each node to notify its presence to any other
node in the network. To achieve this goal, every t seconds
a node sends a claim message advertising its presence to all
the network nodes through a broadcast message. A node
receiving this claim would restart a timeout set to t + σ
where σ accounts for network propagation delay. Should the
presence claim not be received before the timeout elapses,
the revocation procedure would be triggered. However, note
that if a node is required to store the ID of any other node as
well as the receiving time of the received claimmessage,O(n)
memory locations would be needed in every node. To reduce
the memory requirement on node, it is possible to assume
that the presence in the network of each node is tracked by a
small subset of the nodes of the network. Hence, if a node is
absent from the network for more than t seconds, its absence
can still be detected by a set of nodes.

0 5000 10000 15000 20000

Elapsed time after last meeting (s)

r = 10 m
r = 20 m

P
ro

ba
bi

lit
y

r = 30 m

0

0.2

0.4

0.6

0.8

1

Figure 1: Noncooperative approach: the probability for two nodes
not to remeet again: n = 100, smin = 5m/s, smax = 15m/s.

3.2. Our Approach. Our approach is based on the intuition
that leveraging node mobility and cooperation helps node
capture detection. We start from the following observation:
if node a has detected a transmission originated by node b,
at time t, we will say that a meeting occurred. Now, nodes a
and b are mobile, so they will leave the communication range
of each other after some time. However, we expect these two
nodes to remeet again within a certain interval of time, or at
least within a certain time interval with a certain probability.
The solution can also be thought of as an exploitation of
the opportunistic communication concept [27], like contact-
based message delivery, to wireless ad hoc network security.
In [25], the authors investigated how mobility can be used
to detect a node capture and investigated the feasibility of
mobility-based solutions. As a starting point, we analysed
the remeeting probability through network simulation: the
results comply with previous studies on delay in mobile ad
hoc networks [12]. In Figure 1, we report on the simulation
results on the probability that two nodes that had a meeting
would not have a meeting again after x seconds. This
probability has been evaluated for different values of the
communication radius. In particular, we assume that the
nodes are randomly deployed in a square area of 1000m ×
1000m and that they move according to the random way-
point mobility model. While the x-axis indicates the time
after the last meeting, the y-axis indicates the probability
that the two nodes have not remet yet. For example,
assume that node a meets node b at time t, then the
probability that these two nodes have not met again after
5000 seconds is very close to 0 (for a sensing radius r =
30).

In the following section, we propose a protocol that
leverages node mobility to enhance node capture detection
probability.

EURASIP Journal on Wireless Communications and Networking 5

Table 1: Time-related notation.

Symbol Meaning

σ Message propagation delay.

λ Alarm time used in CMC (our proposal).

δ
Time available to the allegedly captured node

to prove its presence.

3.3. Assumptions and Notation. In the remaining of the
paper, we assume a “smart” attacker model: it knows
the detection protocol implemented in the network. This
implies, for the reference solution, that a node a is captured
just after node a has broadcasted its presence claim message.
The assumption at the base of our protocol is that if a node
has been absent from the network for a given interval time
(i.e., none can prove its presence in that interval) the node
has been captured. It is worth noticing that also if a node
is temporarily disconnected, a DTN-like routing mechanism
[35] can be used to deliver a message to that node with
some delay. For the aim of our protocol, we do not explicitly
consider that interval time.

In the following we define a false-positive alarm as an
alarm raised for a node that is actually present. One or
more false-positive alarms can imply a false-positive detection,
which corresponds to the revocation of a not captured
node. Further, we refer to a false-negative detection as a
captured node not actually revoked. However, we observe
that using the presence-proving mechanism introduced in
this paper (later discussed in Section 4), a node that is
accused by a false-positive alarm would prove its presence,
hence neutralizing the revoke. Furthermore, we observe that
accordingly to our protocol, a node no longer active (e.g.,
destroyed or with run out batteries) would be revoked.
However, there would be no false alarms and the overhead
paid for the protocol would be just one network flooding.
The flooding would allow every node in the network to be
aware of the absence of the failed node—having a beneficial
effect for other protocols such as routing. In general, we
cannot distinguish if a node is not able to communicate
with the other network nodes for a nonmalicious reason,
or because it has been actually captured—our solution is
conservative in this way, revoking such a node. It is out of
the scope of this paper, and left as future work, to address the
recovery of the former type of revoked nodes.

Another issue is Denial of Service (DoS). Indeed, since
alarms are flooded in the network, it could be possible for
a corrupted node to trigger false alarms so as to generate a
DoS. This issue is out of the scope of this paper, however,
for the sake of completeness, we sketch in the following
a possible solution. The impact of false positives can be
mitigated noticing that it could be possible, once the recovery
mechanism detects a false alarm, to associate a failure tally
to the node that raised the false alarm. If the tally exceeds
a certain threshold, the appropriate action to isolate the
misbehaving node could be take.

Further, we assume the existence of a failure-free node
broadcasting mechanism [36]; and, finally, we point out that
addressing node-to-node secure communications properties

such as confidentiality, integrity, privacy, and authentication
are out of the scope of this paper. However, note that a few
solutions explicitly addressing these issues can be found in
literature [4, 37, 38].

Table 1 resumes the intervals time notation used in this
paper.

4. The Protocol

In this section, we describe our proposal for a node Capture
detection protocol that leverages Mobility and Cooperation
(CMC Protocol). Basically, each node a is given the task of
witnessing for the presence of a specific set Ta of other nodes
(we will say that a is tracking nodes in Ta). For each node
b ∈ Ta that a gets into the communication range of, a sets a
new time-out for bwith the value of the a’s internal clock; the
time out will expire after λ seconds. The meeting nodes can
also cooperate, exchanging information on the meeting time
of nodes of interests, that is, nodes that are tracked by both
a and b. Note that node cooperation is an option that can be
enabled or disabled in our protocol. If the time-out expires
(i.e., a and b did not remeet within λ seconds), a floods the
network with an alarm message. If node b does not prove
its presence within δ seconds after the broadcasted alarm is
flooded, every node in the network will revoke node b. The
detailed description of the CMC protocol follows.

4.1. Protocol Description. The CMC protocol is event-based;
in particular, it is executed when the following holds.

(i) Node a and node b meet: this event triggers node a
and node b to execute CMC Meeting(IDb, false,−)
and CMC Meeting (IDa, false,−), respectively, if the
cooperation parameter is set to false. Otherwise, node
a executes CMC Meeting (IDb, true,−) and node b
executes CMC Meeting (IDa, true,−). The function
CMC Meeting is also used in the cooperative scenario
as a virtualmeeting in order to update node presence
information.

(ii) The time-out related to node IDx expires on node a:
node a executes the procedure CMC TimeOut (IDx).

(iii) Node a eavesdrops a message m: node a executes the
procedure CMC Receive(m).

Algorithms 1, 2, and 3 show the corresponding
pseudocode. The procedure CMC Meeting, shown in
Algorithm 1, is executed by both nodes involved in a meet-
ing. In the case of a real meeting, the time is not specified,
then the current node time ta is used. However, when the
procedure is invoked as a virtual meeting, a reference time
(tx) is also considered (lines 2, 3, and 4). When node ameets
node b, node a checks if it is supposed to trace node b (that is
if b ∈ Ta). This check is performed using the Trace function
(line 5). It takes in input two node IDs, and provides a result
pseudouniformly distributed in [1 · · · �n/|T|�]—where n is
the size of the wireless ad hoc network and |T| is the number
of nodes tracked by each node. Node b is to be tracked if and
only if the result of the Trace function is one. A simple and
efficient implementation of the function Trace can be found

6 EURASIP Journal on Wireless Communications and Networking

in [39], where it has been used in the context of pairwise
key establishment. Assume now that b ∈ Ta, then a further
check on node b is performed (line 6). Indeed, node b could
be already revoked. Hence, each node stores a Revocation
Table (RTa) that lists the revoked nodes. If both previous tests
(lines 5 and 6) succeed, then a calls the function Update that
updates the information about the last meeting with node b
(line 7). For example, if node ameets b at a given time ta, the
function Update sets the information 〈IDb, ta〉 in the CTa (a
Check Table stored in node amemory). Node a uses a Time-
out Table TTa to store and signal the following time-outs:

(i) ALARM time-out, which is triggered after λ seconds
are elapsed without remeeting node b.,

(ii) REVOKE time-out, which is triggered after δ seconds
are elapsed from receiving/triggering a node revoca-
tion for node b—assuming that in these δ seconds no
presence claim from b are received.

Then, for each meeting with non-revoked nodes in Ta, node
a removes any previous time-out for the met node and sets
a new ALARM time-out for that node (line 8). Note that
both the update functions (lines 7 and 8) do not perform any
operation if the time argument tx is lower than the currently
stored meeting time for the node IDx: . This could happen in
the case of a virtualmeeting.

If the cooperation option is set (COOP opt=true in line
11), also the following steps are performed. For each not
revoked node x traced by both node a and b (lines 12, 13,
and 14), node a sends a CLAIM message to b carrying the
meeting time between a and x. Each CLAIMmessage has the
following format: 〈IDa,CLAIM, IDx, elapsed time〉, where
IDa is the sender of the claimmessage, CLAIM is the message
type, IDx is the ID of node x the claim is related to, and the
last parameter indicates the meeting time between a and x.
Another message type is ALARM, described in the following.

CMC TimeOut (Algorithm 2) is triggered when a time-
out expires. If on node a an ALARM time-out expires for
node IDb, this means that node a did not meet node IDb

for a time λ. Then, node a floods the network with an alarm
(Algorithm 2, line 3) and a new REVOKE time-out for node
b is set. Each ALARM message has the following format:
〈IDa,ALARM, IDb〉, where IDa is the sender of the claim
message, ALARM notifies the message type, and IDb is the
ID of node b the alarm is related to. When a REVOKE time-
out expires, this means that after δ seconds elapsed from the
alarm triggering, no evidence of the presence in the network
of the suspected captured node appeared. In this latter case,
a node revocation procedure for node b is invoked by node
a.

CMC Receive (Algorithm 3) is invoked when a message
MSG is received. The fields of the message are assigned
to local variables (line 2) and the type of the message is
checked (line 3). Assume the message is of type ALARM: the
executing node checks if the alarm is related to itself (line 4).

If the latter test fails, a further check is performed: the
node checks whether the node IDx is not already revoked
(line 5). If the check succeeds, a REVOKE time-out is

Input: IDa : ID of the executing node. IDb : ID of the
met node. ta : Current time of node a. CTa : Check
Table stored in node amemory. RTa : Revoked
nodes table stored in node amemory. TTa : Time
out table stored in node amemory. λ : Alarm time.
δ : Time for the accused node to prove its
presence. COOP opt : Boolean variable for
cooperation option.

1begin
2 if NotSpecified (tx) then
3 tx = ta;
4 end
5 if Trace (IDa, IDb)=1 then
6 if Is-Not-Revoked (RTa, IDb) then
7 Update (CTa,〈IDb, tx〉);
8 UpdateTimeOut (TTa,

〈IDb, tx + λ,ALARM〉);
9 end
10 end
11 if COOP opt = true then
12 foreach 〈IDx, tx〉 ∈ CTa do
13 If Is-Not-Revoked (RTa,IDb) then
14 If Trace (IDb, IDx) = 1 then
15 〈told〉 ←Look-Up (CTa, IDx);
16 〈IDa,CLAIM, IDx, told〉 → b;
17 end
18 end
19 end
20 end
21 end

Algorithm 1: CMC Meeting(IDx,COOP opt, tx). Node meeting
event handler.

set through an UpdateTimeOut procedure. Note that a
REVOKE time-out for node b already should be in place,
this procedure does not override the existing REVOKE time-
out and simply returns. If the ALARM is related to the
executing node itself (test performed at line 4 fails) node a
will flood the network with a presence CLAIM message (line
9). This measure prevents false-positive detection, that is, the
revocation of nodes that are active in the network.

If the received message is of type CLAIM, this means
that a node that was the target of an ALARM message is
proving its presence; this message triggers a virtual meeting
between a and the wrongly accused nodes (line 13). The
overall result is that node a disables the REVOKE time-
out for that node while restarting the ALARM time-out for
the same node. These activities are also triggered when the
COOP opt is set (in fact, a CLAIM message is also sent in
line 16, Algorithm 1). The objective of this invocation is to
update the information on traced nodes via an information
exchange with the met nodes.

Finally, when a receives a message issued by node b
which is not originated within the protocol (e.g., it can be
originated by the application layer), this message can be
interpreted by the protocol as an evidence of the presence
of node b. Therefore, this can be interpreted as a special case

EURASIP Journal on Wireless Communications and Networking 7

Input: IDa : ID of the executing node. IDb : ID of the
node which time-out is expired. ta : Current
time of node a. RTa : Revoked nodes table
stored in node amemory. TTa : Time out
table stored in node amemory. δ : Time
for the accused node to prove its presence.

1 begin
2 if TimeOutKind(ALARM) then
3 Flooding (〈IDa,ALARM, IDb〉);
4 UpdatingTimeOut (TTa,

〈IDb, ta + δ,REVOKE〉);
5 else
6 RevokeNode (RTa,IDx)
7 end
8 end

Algorithm 2: CMC TimeOut(IDx). Node Time Out event han-
dler.

Input: IDa : ID of the executing node. ta : Current time
of node a.MSG : Received message. RTa :
Revocation Table stored in node amemory. δ :
Time for the accused node to prove its presence.

1 begin
2 〈IDb,msgtype, IDx, tx〉 ←MSG;
3 if (msgtype = ALARM) then
4 if (IDx /= IDa) then
5 if Is-Not-Revoked (RTa,IDx) then
6 UpdateTimeOut (TTa,

〈IDb, ta + δ,REVOKE〉);
7 end
8 else
9 Flooding (〈IDa,CLAIM,−,−〉);
10 end
11 end
12 if(msgtype = CLAIM)then
13 CMC Meeting(IDx, f alse, tx);
14 end
15 CMC Meeting(IDb, f alse,−);
16 end

Algorithm 3: CMC Receive(MSG). Received message event han-
dler.

of a node meeting, and the appropriate actions are triggered
(line 15).

5. Simulations and Discussion

We performed simulations using a self-developed discrete
event simulator. The simulator is written in C++ and imple-
ments the Random Waypoint Mobility Model. The events
(nodes meeting, node arrival at its selected destination,
and alarms time-out) are pushed to and pulled from an
ideal time-line. Initially, nodes are assumed to be randomly
deployed over a network area. Then, until the simulation
ends, for each node, a random speed and destination location

are randomly chosen (within the bounds set by the user):
this implies to analyze and to order all the meeting events
and the node arrival events with reference to the time-
line. While the time goes by, the events on the time-line
are processed. The events corresponding to node arrival are
processed as previously described (choosing a destination, a
node speed, and analyzing the new generated events). The
node meeting events are processed as the core part of our
detection protocol, for example, updating the time-out or
sharing information with the met nodes. The alarms time-
out expiring event generates the network flooding.

As for the energy model, we adopted the one proposed in
[40]. To plot each point in the following graphs (as well as for
Figure 1), we performed a set of experiments and reported
the averaged results; the number of experiments has been set
to achieve a confidence interval of 98%.

The comparison on the detection time between our
protocol and the reference solution has been performed
considering the energy cost. In particular, the energy cost
has been expressed as a frequency of network flooding, as
explained later.

5.1. Node Remeeting. In order to better understand how
mobility and cooperation can speed up the capture detection
process, we performed a first set of simulations to assess
the frequency of node-to-node meetings. We considered
a network of n = 100 nodes randomly deployed over
a square area of 1000m × 1000m. We used the random
waypoint mobility model as the node mobility pattern.
In particular, in our simulations we set the value for the
minimum node speed greater than zero—this is a way to
solve the decreasing average node speed problem of the
random waypoint mobility model [8].

The experiment was set in this way: we choose two nodes
a and b; when they meet, we set time at t = 0 and continued
following these nodes thorough their network evolution to
experimentally determine how long it takes for these two
nodes to meet again, in both the noncooperative and in
the cooperative case. Crucially, in the cooperative scenario,
if node c meets node a and sends to it all the information
c received during its last meeting with node b, this also
accounts as a meeting between a and b.

We performed the simulation for different values of
sensing radius and average node speed both for the non-
cooperative and the cooperative scenario. The results are
shown in Figure 2. The experiments support the following,
simple intuitions: node cooperation increases the meeting
probability; the higher is the sensing radius, the higher is
the meeting probability; and the higher is the average node
speed, the higher is the meeting probability. We used these
results also to propose a reasonable value for the variable λ to
be used in the implementation of our proposal, for both the
cooperative and noncooperative case.

5.2. Experimental Results.

Parameters Tuning. As observed in previous work [25],
all the protocols parameters are correlated, for example,

8 EURASIP Journal on Wireless Communications and Networking

0 5000 10000 15000 20000

Elapsed time after last meeting (s)

P
ro

ba
bi

lit
y

0

0.2

0.4

0.6

0.8

1

(a) Without node cooperation, savg = 5m/s

0 5000 10000 15000 20000

Elapsed time after last meeting (s)

P
ro

ba
bi

lit
y

0

0.2

0.4

0.6

0.8

1

(b) With node cooperation, savg = 5m/s

0 5000 10000 15000 20000

Elapsed time after last meeting (s)

r = 10 m
r = 20 m

P
ro

ba
bi

lit
y

r = 30 m

0

0.2

0.4

0.6

0.8

1

(c) Without node cooperation, savg = 20m/s

0 5000 10000 15000 20000

Elapsed time after last meeting (s)

r = 10 m
r = 20 m

P
ro

ba
bi

lit
y

r = 30 m

0

0.2

0.4

0.6

0.8

1

(d) With node cooperation, savg = 20m/s

Figure 2: Probability for two nodes not to remeet: n = 100.

increasing the average speed of the network would increase
the number of meetings between nodes, hence reducing
the number of false alarms. However, if we assume that
parameters such as the network size, the nodes’ mobility,
and the network area are given, the main parameters that
the network administrator can set is the alarm time λ. In
Figures 3(a) and 3(b) we show the influence of λ over
the detection time and the rate of false positive alarms.
We notice that increasing the alarm time also increases the
detection time while decreasing the number of false positives.
In particular, from Figure 3(a), we observe that the detection
time increases linearly with λ. Furthermore, we observe that
the detection time using node cooperation is higher than
the one without node cooperation. The motivation follows
from the fact that without node cooperation nodes have

stale information about the presence of the traced nodes.
So, when a node is really captured, in the noncooperative
scenario there will be some nodes that are already not
meeting the captured node for a while. These nodes would
raise the capture alarm before λ seconds elapses after the
real node capture, hence decreasing the detection time with
respect to the cooperative protocol. From Figure 3(a), we
observe that the false alarms rate decreases exponentially
with λ. Comparison between Figures 3(a) and 3(b) suggests
that there is a tradeoff between the detection time and the
number of false alarms. In order to give a straight and fair
comparison between the proposed solutions (cooperative
and noncooperative) and also with the reference solution, in
the following section, we compare the detection time of the
solutions on the basis of the overall energetic cost.

EURASIP Journal on Wireless Communications and Networking 9

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

500 1000 1500 2000 2500 3000 3500 4000 4500 5000

D
et

ec
ti

on
 t

im
e

(s
)

CMC: without node cooperation
CMC: using node cooperation

λ (s)

(a) Detection time

500 1000 1500 2000 2500 3000 3500 4000 4500 5000

λ (s)

CMC: without node cooperation
CMC: using node cooperation

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Fa
ls

e
al

ar
m

s
(s

)

(b) False alarms rate

Figure 3: Influence of λ on CMC performances: n = 100, r = 20m,
Avg speed = 15m/s.

Energy-Driven Comparison. One of the key issues in ad hoc
and sensor network is the energy consumption. Hence, we
compared our proposal with the reference solution focusing
on energy consumption. To provide an evaluation of our
protocols in a manner that is device-independent, we chose
to express the energy consumption in terms of generated
messages. As for the energy devoted to computation, we
considered the cost be negligible, as in [40].

The main communication cost of both our protocol
and the reference solution is the number of flooding. The
reference solution uses the flooding as a presence claim
message while our protocol uses the flooding for both alarm

broadcast and alarm-triggered presence notification; the
latter flooding occurs when a node that has been erroneously
advertised as possibly compromised sends (floods) a claim
of its actual presence. To simplify our discussion, we assume
that a network flooding corresponds to sending and to
receiving a message by each network node. This is not
always the case; actually, the load for broadcasting varies with
different network parameters and the specific broadcasting
protocol used [34]. However, this approximation is good
enough to achieve our goal, that is, to show the qualitative
improvement of our solution over the reference solution.
To better appreciate the comparison with the reference
solution—where a flooding occurs every time interval—
in the following graphs, we report on the x-axis the time
interval between two subsequent flooding, instead of the
flooding frequency. Note that once the flooding interval
is fixed, also the amount of required energy is fixed, and
we can plot the performance of our protocol when using
the same amount of energy, that is, the same amount of
messages.

In our simulation, we analyze how increasing the energy
overhead affects the detection time. In other words, we fix the
energy overhead at the same level for both protocols under
evaluation, and measure which protocol achieves the best
detection time.

Performance. To compare the performance of the proposed
solution with the reference solution presented in Section 3.1,
we implemented our protocol. In what follows, we fix
a sensing radius of r = 20m. Since nodes in ad hoc
settings could have strict memory constraints (e.g., in sensor
network), in our simulations, we assume that each node
traces a small number of other nodes. In fact, as a result
of the pseudorandom function Trace (Algorithm 1, line 2)
each node traces exactly 5 other network nodes. For the
cooperative scenario, when two nodes a and b meet, they
exchange the information concerning the nodes tracked by
both a and b; we assume that this information can be
contained in one message. Indeed, the number of shared
traced nodes can be up to 5 (number of nodes traced by
each node), but in practice, it turns out to be much smaller,
on average (0.25 in our setting). We simulated our protocol
with and without node cooperation, varying the alarm time
from 250 to 8000 seconds and the average node speed from
5m/s to 20m/s. Figures 4(a) and 4(b) show the results of the
simulation of our protocol without and with cooperation,
respectively.

Figure 4(a) shows the results when cooperation is
switched off, for the two protocols and different speeds.
On the x-axis, we fix the flooding interval for the reference
solution protocol. In this way, the detection time is also
fixed for the reference solution and it does not change when
changing the speed. The quality of the detection for the
reference solution is just linear: by doubling the flooding
interval also the detection time doubles, while the energy
cost halves. Figure 4(a) confirms our intuition: mobility
with local cooperation can help computing global properties
incurring in a small overhead.

10 EURASIP Journal on Wireless Communications and Networking

0

2000

4000

6000

8000

10000

0 10 20 30 40 50 60

D
et

ec
ti

on
 t

im
e

Network flooding intervals (s)

Reference solution
CMC: average speed = 5 m/s
CMC:average speed = 10 m/s
CMC: average speed = 15 m/s
CMC: average speed = 20 m/s

(a) Without node cooperation

0

2000

4000

6000

8000

10000

0 10 20 30 40 50 60

D
et

ec
ti

on
 t

im
e

Network flooding intervals (s)

Reference solution
CMC: average speed = 5 m/s
CMC: average speed = 10 m/s
CMC: average speed = 15 m/s
CMC: average speed = 20 m/s

(b) Using node cooperation

Figure 4: CMC Detection time: n = 100, r = 20m.

In this simulation scenario, for a reasonable speed of
nodes, our protocol outperforms the reference solution.
Take, as an example, a flooding interval of 50 seconds. From
Figure 4(a), we can see that the detection time of the refer-
ence solution protocol is 5000 seconds. The performance of
our protocol depends on the average speed of the system.
If the average speed of the system is slow, for example,

5m/s, then the detection time is more than 6000 seconds.
However, if the network nodes move faster, then our solution
improves over the reference solution. For instance, when
the average speed is 20m/s, the detection time is as low as
1600 seconds, much faster than the reference solution. From
this experiment, it is also clear that the performance of our
protocol depends on the average speed in the network: the
faster the better. While the reference solution is an excellent
solution for slow networks, for example, where nodes are
carried by humans walking, our solution is the best for faster
networks, and it is always the best when the energy overhead
must be low. Now, we will switch cooperation on, and see
that the performance of our protocol increases considerably,
even though with some drawbacks when the energy budget is
small.

Figure 4(b) describes the performance of our protocol
when using cooperation. When the network flooding fre-
quency is high, that is, network flooding interval is small,
cooperation is very effective. Further, with cooperation, the
performance of our protocol improves as the average speed
of the nodes increases. In this case, our protocol is better
than the reference solution even when starting from very
high flooding frequency, that is, starting from systems that
are very fast in detecting the node capture attack and that,
consequently, have very high energy requirements. What
is less intuitive is that cooperation is not useful when we
move to more energy-saving systems. Take, as an example,
a network where the average speed is 15m/s. Our protocol
is better than the reference solution whenever the design
goal is to have a network with more energy available and
to achieve a small detection time, that is, in Figure 4(b),
whenever the flooding interval is smaller than 38 seconds.
However, when considering a network with more stringent
energy requirements, for example, when the flooding interval
is 50 seconds, then it is simply not possible to reach
such low energy costs by using cooperation. Cooperation
has a cost, which is higher when the network is faster—
indeed, in a faster network, the nodes meet more frequently,
and thus cooperation is higher. In this case, the correct
design guideline is to use our protocol with cooperation,
if the objective is to have a system that is fast in detecting
the node capture attack, though using more energy—in
particular, in our example until a flooding interval of 38
seconds—and then to switch cooperation off, to get a cheaper
protocol that can be used when the flooding interval can be
larger.

As described in Figure 4(b), the limits of cooperation
appear sooner in faster networks. This is intuitive, coop-
eration is more costly when nodes meet more often, and
so the tradeoff moves toward noncooperation earlier. The
implications of using mobility and local communications
to compute global properties are not self-evident. If the
network is fast enough, it is always better to use protocols like
the one we propose rather than using static approaches like
the reference solution. However, node cooperation flavored
techniques, which appears to be effective in any case, have
the result of making the information in the network spread
faster, but at a cost.

EURASIP Journal on Wireless Communications and Networking 11

0

2000

4000

6000

8000

10000

0 10 20 30 40 50 60

D
et

ec
ti

on
 t

im
e

Network flooding intervals (s)

Reference solution
CMC: captured nodes = 1
CMC: captured nodes = 10

(a) Without node cooperation

0

2000

4000

6000

8000

10000

0 10 20 30 40 50 60

D
et

ec
ti

on
 t

im
e

Network flooding intervals (s)

Reference solution
CMC: captured nodes = 1
CMC: captured nodes = 10

(b) Using node cooperation

Figure 5: CMC Detection time under massive attack: n = 100, r =
20m, savg = 15m/s.

5.3. Massive Attacks. In order to investigate the behavior
of our protocol under a massive attack, we simulated the
capture of 10% of the network nodes (10 out of 100)
at the same time. We fixed the average speed at 15m/s.
Simulation results are shown in Figures 5(a) and 5(b) for the
noncooperative and cooperative scenarios, respectively. For
both cases, the figures show the result for one captured node
and 10 captured nodes in a network of 100 nodes. From both
figures, we can see that all the protocols, both the reference
solution and our solution, with or without cooperation, are

robust against massive attacks. Indeed, the small differences
in performance do not justify a change in the defense strategy
but for small intervals.

5.4. Other Mobility Patterns. We stress once again that the
aim of this work is to give a proof of concept that both
node mobility and node cooperation can help thwarting
the node capture attack. Hence, to abstract from mobility
details we choose to use the Random Waypoint Mobility
Model. Mobility models based on randomly moving nodes
may, for example, provide useful analytical approximations
to the motion of vehicles that operate in dispatch mode
or delivery mode [41]. It is important to note that the
results obtained in this work are not directly applicable to
others scenario-inspired mobility models [12]; for instance,
while intermeeting time follows an exponential distribution
under the RWM, intermeeting time is shown to be better
approximated by a power-law distribution in some scenarios
[12, 42]. However, it is also interesting to note that our
solution allows the network to let autonomously emerge
the subgroups of nodes that meet with higher frequency
(communities). In fact, this can be done leveraging the false-
positive alarm: if node a sends a high number of false alarms
(further revoked by the accused node) related to node b, this
implies that a actually does not meet with b with “high”
frequency. This information can be interpreted as if a and
b do not belong to the same community.

6. Conclusions

In this paper we have proposed, to the best of our knowledge,
the first distributed solution to a major security threat in
MANETs: the node capture attack. Our solution is based on
the intuition that node mobility, together with local node
cooperation, can be leveraged to design security protocols
that are extremely effective and energy-efficient. We have also
developed a protocol that, increasing the level of cooperation
among nodes, makes global information flow faster in the
network, even if at a cost in terms of energy. The experiments
clearly show that leveraging mobility and cooperation helps
in designing effective and efficient protocols. In particular,
we also pointed out that there is critical speed necessary
to induce enough information flow to make these new
protocols outperform traditional ones, designed for static
networks.

We believe that the ideas and protocols introduced in
this paper pave the way for further research in the area;
furthermore, even if specifically suited to address a major
security threat, they could be also adopted in other scenarios
to support other emergent properties as well.

Acknowledgments

The authors would like to thank the anonymous reviewers
for their helpful comments that helped to improve the
quality of this paper. The authors are solely responsible for
the views expressed in this paper, which do not necessarily
reflect the position of supporting Organizations. This work

12 EURASIP Journal on Wireless Communications and Networking

was partly supported by: (1) the Spanish Ministry of Edu-
cation through projects TSI2007-65406-C03-01 “E-AEGIS”
and CONSOLIDER INGENIO 2010 CSD2007-0004 “ARES,”
(2) the Government of Catalonia under grant 2005 SGR
00446, and (3) the project APPLICAZIONI GOVERNATIVE
LEGATE ALL’USO DEL PRS GALILEO (PRESAGO)—
contract ASI I/030/07/0 starting September 6, 2007.

References

[1] H. Chan, A. Perrig, and D. Song, “Random key predistribution
schemes for sensor networks,” in Proceedings of the IEEE
Symposium on Security and Privacy (S&P ’03), September
2003.

[2] J. Newsome, E. Shi, D. Song, and A. Perrig, “The sybil attack in
sensor networks: analysis & defenses,” in Proceedings of the 3rd
International Conference on Information Processing in Sensor
Networks (IPSN ’04), April 2004.

[3] M. Demirbas and Y. Song, “An RSSI-based scheme for sybil
attack detection in wireless sensor networks,” in Proceedings
of the International Symposium on a World of Wireless, Mobile
and Multimedia Networks (WoWMoM ’06), pp. 564–568, New
York, NY, USA, June 2006.

[4] R. Di Pietro, L. V.Mancini, and A.Mei, “Energy efficient node-
to-node authentication and communication confidentiality in
wireless sensor networks,”Wireless Networks, vol. 12, no. 6, pp.
709–721, 2006.

[5] M. Conti, R. Di Pietro, L. V. Mancini, and A. Mei, “A ran-
domized, efficient, and distributed protocol for the detection
of node replication attacks in wireless sensor networks,” in
Proceedings of the International Symposium on Mobile Ad Hoc
Networking and Computing (MobiHoc ’07), pp. 80–89, 2007.

[6] B. Parno, A. Perrig, and V. D. Gligor, “Distributed detection of
node replication attacks in sensor networks,” in Proceedings of
the IEEE Symposium on Security and Privacy (S&P ’05), 2005.

[7] Information Processing Technology Office (IPTO) Defense
Advanced Research Projects Agency (DARPA), BAA 07-46
LANdroids Broad Agency Announcement, 2007, http://www
.darpa.mil/index.html.

[8] A. Perrig, J. Stankovic, and D. Wagner, “Security in wireless
sensor networks,” Commununications of ACM, vol. 47, no. 6,
pp. 53–57, 2004.

[9] S. Capkun, J.-P. Hubaux, and L. Buttyán, “Mobility helps
security in ad hoc networks,” in Proceedings of the International
Symposium on Mobile Ad Hoc Networking and Computing
(MobiHoc ’03), pp. 46–56, 2003.

[10] C. Piro, C. Shields, and B. N. Levine, “Detecting the sybil
attack in mobile ad hoc networks,” in Proceedings of the
2nd International Conference on Security and Privacy in
Communication Networks (SecureComm ’06), Baltimore, Md,
USA, 2006.

[11] J. Broch, D. A. Maltz, D. B. Johnson, Y.-C. Hu, and J. Jetcheva,
“A performance comparison of multi-hop wireless ad hoc
network routing protocols,” in Proceedings of the 4th Annual
ACM/IEEE International Conference on Mobile Computing and
Networking (MobiCom ’98), pp. 85–79, 1998.

[12] G. Sharma, R. Mazumdar, and N. B. Shroff, “Delay and
capacity trade-offs in mobile ad hoc networks: a global
perspective,” in Proceedings of the 25th Conference on Computer
Communications (INFOCOM ’06), 2006.

[13] A. Becher, E. Becher, Z. Benenson, andM. Dornseif, “Tamper-
ing with motes: real-world physical attacks on wireless sensor
networks,” in Proceeding of the 3rd International Conference on
Security in Pervasive Computing (SPC ’06), pp. 104–118, 2006.

[14] M. Grossglauser and M. Vetterli, “Locating nodes with EASE:
last encounter routing in ad hoc networks through mobility
diffusion,” in Proceedings of the 22nd Annual Joint Conference
of the IEEE Computer and Communications Societies (INFO-
COM ’03), San Francisco, Calif, USA, 2003.

[15] J. Luo and J.-P. Hubaux, “Joint mobility and routing for
lifetime elongation in wireless sensor networks,” in Proceedings
of the 24th Annual Joint Conference of the IEEE Computer and
Communications Societies (INFOCOM ’05), Miami, Fla, USA,
March 2005.

[16] C. fan Hsin andM. Liu, “A distributedmonitoringmechanism
for wireless sensor networks,” in Proceedings of the Workshop
on Wireless Security (WiSe ’02), pp. 57–66, 2002.

[17] C. fan Hsin and M. Liu, “Self-monitoring of wireless sensor
networks,” Computer Communications, vol. 29, no. 4, pp. 462–
476, 2006.

[18] N. Hayashibara, A. Cherif, and T. Katayama, “Failure detectors
for large-scale distributed systems,” in Proceedings of the 21st
IEEE Symposium on Reliable Distributed Systems (SRDS ’02),
Suita, Japan, October 2002.

[19] S. Ranganathan, A. D. George, R. W. Todd, and M. C.
Chidester, “Gossip-style failure detection and distributed con-
sensus for scalable heterogeneous clusters,”Cluster Computing,
vol. 4, no. 3, pp. 197–209, 2001.

[20] R. Curtmola and S. Kamara, “A mechanism for
communication-efficient broadcast encryption over wireless
ad hoc networks,” Electronic Notes in Theoretical Computer
Science, vol. 171, no. 1, pp. 57–69, 2007.

[21] D. Huang, M. Mehta, D. Medhi, and L. Harn, “Location-
aware key management scheme for wireless sensor networks,”
in Proceedings of the 2nd ACMWorkshop on Security of Ad Hoc
and Sensor Networks (SASN ’04), pp. 29–42, Washington, DC,
USA, November 2004.

[22] P. Tague and R. Poovendran, “Modeling adaptive node capture
attacks in multi-hop wireless networks,” Ad Hoc Network, vol.
5, no. 6, pp. 801–814, 2007.

[23] P. Tague, D. Slater, J. Rogers, and R. Poovendran, “Vul-
nerability of network traffic under node capture attacks
using circuit theoretic analysis,” in Proceedings of the 27th
IEEE International Conference on Computer Communications
(INFOCOM ’08), pp. 161–165, 2008.

[24] M. Conti, R. Di Pietro, A. Gabrielli, L. V. Mancini, and A.
Mei, “The quest for mobility models to analyse security in
mobile ad hoc networks,” in Proceedings of the 7th Interna-
tional Conference on Wired/Wireless Internet Communications
(WWIC ’09), pp. 85–96, May 2009.

[25] M. Conti, R. Di Pietro, L. V. Mancini, and A. Mei, “Emergent
properties: detection of the node-capture attack in mobile
wireless sensor networks,” in Proceedings of the 1st ACM
Conference on Wireless Network Security (WiSec ’08), pp. 214–
219, 2008.

[26] E. M. Daly and M. Haahr, “Social network analysis for routing
in disconnected delay-tolerant MANETs,” in Proceedings of the
International Symposium on Mobile Ad Hoc Networking and
Computing (MobiHoc ’07), pp. 32–40, September 2007.

[27] J. P. G. Sterbenz, R. Krishnan, R. R. Hain, et al., “Survivable
mobile wireless networks: issues, challenges, and research
directions,” in Proceedings of the 1st ACMWorkshop onWireless
Security (WiSe ’02), pp. 31–40, Atlanta, Ga, USA, 2002.

EURASIP Journal on Wireless Communications and Networking 13

[28] R. Di Pietro, L. Mancini, C. Soriente, A. Spognardi, and G.
Tsudik, “Data security in unattended sensor networks,” IEEE
Transactions on Computers, vol. 58, no. 11, pp. 1500–1511,
2009.

[29] R. Di Pietro, L. Mancini, C. Soriente, A. Spognardi, and
G. Tsudik, “Playing hide-and-seek with a focused mobile
adversary in unattended wireless sensor networks,” Ad Hoc
Networks, vol. 7, no. 8, pp. 1463–1475, 2009.

[30] J. Yoon, M. Liu, and B. Noble, “Random waypoint considered
harmful,” in Proceedings of the 22nd Annual Joint Conference of
the IEEE Computer and Communications Societies, vol. 2, pp.
1312–1321, San Franciso, Calif, USA, March 2003.

[31] E. Hyytiä, P. Lassila, and J. Virtamo, “Spatial node distribution
of the random waypoint mobility model with applications,”
IEEE Transactions on Mobile Computing, vol. 5, no. 6, pp. 680–
694, 2006.

[32] K. Sun, P. Ning, and C. Wang, “Fault-tolerant cluster-wise
clock synchronization for wireless sensor networks,” IEEE
Transactions on Dependable and Secure Computing, vol. 2, no.
3, pp. 177–189, 2005.

[33] B. Williams and T. Camp, “Comparison of broadcasting
techniques for mobile ad hoc networks,” in Proceedings of the
International Symposium on Mobile Ad Hoc Networking and
Computing (MobiHoc ’02), pp. 194–205, 2002.

[34] L. Orecchia, A. Panconesi, C. Petrioli, and A. Vitaletti,
“Localized techniques for broadcasting in wireless sensor
networks,” in Proceedings of the Joint Workshop on Foundations
of Mobile Computing (DIALM-POMC ’04), Philadelphia, Pa,
USA, October 2004.

[35] B. Burns, O. Brock, and B. N. Levine, “MORA routing and
capacity building in disruption-tolerant networks,” Ad Hoc
Networks, vol. 6, no. 4, pp. 600–620, 2008.

[36] H. Liu, P.-J. Wan, X. Liu, and F. Yao, “A distributed and effi-
cient flooding scheme using 1-hop information in mobile ad
hoc networks,” IEEE Transactions on Parallel and Distributed
Systems, vol. 18, no. 5, pp. 658–671, 2007.

[37] S. M. M. Rahman, N. Nasser, A. Inomata, T. Okamoto, M.
Mambo, and E. Okamoto, “Anonymous authentication and
secure communication protocol for wireless mobile ad hoc
networks,” Security and Communication Networks, vol. 1, no.
2, pp. 179–189, 2008.

[38] M. Striki, J. Baras, and K. Manousakis, “A robust, distributed
TGDH-based scheme for secure group communications in
MANET,” in Proceedings of the IEEE International Conference
on Communications (ICC ’04), May 2004.

[39] R. Di Pietro, L. V. Mancini, and A. Mei, “Efficient and resilient
key discovery based on pseudo-random key pre-deployment,”
in Proceedings of the IEEE International Parallel and Distributed
Processing Symposium (IPDPS ’04), pp. 2991–2998, 2004.

[40] A. Wander, N. Gura, H. Eberle, V. Gupta, and S. C. Shantz,
“Energy analysis of public-key cryptography for wireless
sensor networks,” in Proceedings of the 3rd IEEE International
Conference on Pervasive Computing and Communications
Workshops (PERCOMW ’05), 2005.

[41] S. Bandyopadhyay, E. J. Coyle, and T. Falck, “Stochastic
properties of mobility models in mobile ad hoc networks,”
IEEE Transactions on Mobile Computing, vol. 6, no. 11, pp.
1218–1229, 2007.

[42] A. Chaintreau, P. Hui, C. Diot, R. Gass, and J. Scott, “Impact
of human mobility on opportunistic forwarding algorithms,”
IEEE Transactions on Mobile Computing, vol. 6, no. 6, pp. 606–
620, 2007.

	1. Introduction
	2.Related Work and Background
	3. Node Capture Detection through Mobility and Cooperation
	4. The Protocol
	5. Simulations and Discussion
	6. Conclusions
	Acknowledgments
	References

