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Channel aware and opportunistic scheduling algorithms exploit the channel knowledge and fading to increase the average
throughput. Alternatively, each user could be served equally in order to maximize fairness. Obviously, there is a tradeoff between
average throughput and fairness in the system. In this paper, we study four representative schedulers, namely the maximum
throughput scheduler (MTS), the proportional fair scheduler (PFS), the (relative) opportunistic round robin scheduler (ORS),
and the round robin scheduler (RRS) for a space-time coded multiple antenna downlink system. The system applies TDMA based
scheduling and exploits the multiple antennas in terms of spatial diversity. We show that the average sum rate performance and the
average worst-case delay depend strongly on the user distribution within the cell. MTS gains from asymmetrical distributed users
whereas the other three schedulers suffer. On the other hand, the average fairness of MTS and PFS decreases with asymmetrical
user distribution. The key contribution of this paper is to put these tradeoffs and observations on a solid theoretical basis. Both
the PFS and the ORS provide a reasonable performance in terms of throughput and fairness. However, PFS outperforms ORS for
symmetrical user distributions, whereas ORS outperforms PFS for asymmetrical user distribution.
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1. Introduction

The optimal strategy for maximizing the sum capacity with
perfect channel state information (CSI) of a cellular single-
input single-output (SISO) multiuser channel is to allow
only the user having the best channel conditions in terms
of SNR to transmit at each time slot (TDMA). This result
in [1] has induced the notion of multiuser diversity [2],
that is, the achievable capacity of the system increases with
the number of the users. The corresponding scheduling
policy is called maximum throughput scheduler (MTS). Sub-
sequently, TDMA-based channel-aware scheduling schemes
which consider temporal fairness [3] or stringent rate
constraints under energy efficiency [4] are developed.

A major disadvantage of MTS is its unfairness toward
users at the cell edge. On the other hand, the most fair
but channel unaware scheduler is the round robin scheduler

(RRS) [5], that is, all transmissions take place in a strict
numerical order. The MTS and RRS leave room for various
channel aware schedulers that lie in between these two. In
order to increase the fairness for users at the cell edge, the so-
called proportional fair scheduler (PFS) can be applied. The
PFS weights the instantaneous transmission rates by their
averages to find the best user and achieves equal activity
probability for all users [6]. Yet another scheduler, which is
referred to as opportunistic round robin scheduling (ORS),
was introduced in [7]. It is a combination of the RRS and
MTS. The comparison of different schedulers with respect
to different performance criteria is a highly viable research
area. For instance, in [8], the throughput guarantee violation
probability is approximated and simulated for different
schedulers in different channel models. The asymptotic
throughput of channel-aware schedulers is analyzed in [9].
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In order to quantitatively measure the impact of the
scheduler on the fairness, different measures are proposed in
the literature [10–12]. The Jain fairness index (JFI) defined
in [10], also known as the global fairness index (GFI)
[13], provides a single number between zero and one that
measures the fairness even for resource scheduling in finite
windows. The average fairness defined in [11] is developed
from an information theoretic point of view. The worst-case
delay as it is used in, for example, [12] measures the average
number of transmissions needed until all users were active at
least m times.

Obviously, there exists a tradeoff between average
throughput and average fairness [14]. In this paper, we
study this tradeoff for the four scheduling algorithms MTS,
RRS, PFS, and ORS. The main novelty lies in the systematic
approach to this problem using majorization theory. This
tool helps understanding the impact of user distributions
within the cell on the system performance and on the average
worst-case delay. The application of majorization theory
allows to analytically and qualitatively assess the advantages
and disadvantages of the four channel-aware schedulers. The
contributions of the paper are as follows.

(1) In Section 2.5, closed form expressions for the four
scheduler for arbitrary nonsymmetrical user distri-
butions are derived.

(2) The impact of the user distribution on the average
sum rate is analyzed in Section 3, and it is shown that
the average sum rate is increased with asymmetrical
user distributions for MTS. For all other schedulers
(RRS, PFS, and ORS), it decreases.

(3) Different fairness measures and their properties are
discussed in Section 4. Furthermore, we study the
impact of the user distribution and its connection to
the service probabilities.

(4) The asymptotic performance for high SNR or large
number of users is analyzed in Section 5.

(5) In Section 6, the sum rate of MTS, RRS, and PFS
under a fixed rate constraint is derived, and the
impact of user distributionis characterized.

(6) In Section 7, we illustrate the theoretical results with
numerical single-cell multiuser simulations.

The paper is concluded in Section 7. Parts of the results for
single-antenna transmitter are presented without proofs in
[15]. The impact of interferer locations on the downlink
performance of the system is studied in [16].

2. SystemModel and Preliminaries

In this section, we present the system model, the channel
model, the measure of the user distribution based on
majorization, the high-SNR performance measures, and the
four scheduler. Our approach to the cross-layer analysis of
these scheduling algorithms is physical layer oriented.

2.1. System Model. In the signal model, there are K mobile
users which are served by a base station in downlink
transmission. The base station has multiple antennas (nT),
the mobiles have one antenna each. Denote the channels to
the users as h1, . . . ,hK . The base applies an OSTBC [17, 18]
in order to exploit spatial diversity without spatial feedback
overhead. Spatial feedback contains information about the
spatial signatures of the user channels, whereas channel
quality information contains scalar values . The data stream
vectors d1, . . . ,dK of dimension 1 × M of the K users are
weighted by a power allocation p1, . . . , pK and added before
they come into the OSTBC as x̂1, . . . , x̂M . The output of the
OSTBC is a vector x = [x1, . . . , xnT ] of dimension 1 × nT
(compare to system model in [19]). The code rate is given by
rc =M/nT . Note that the framework can be extended also to
other code classes [20].

Each mobile first performs channel matched filtering
according to the effective OSTBC channel. Afterward, the
received signal at user k of stream n is given by

yk,n = ak

K
∑

l=1

xl,n + nk,n, 1 ≤ n ≤M, (1)

with fading coefficients αk = a2
k = ‖hk‖2/nT , transmit stream

n intended for user l as xl,n and noise for stream n as nk,n.
There are M parallel streams for each mobile. However, all
streams have the same properties in terms of ak and noise
statistics. Therefore, we restrict our attention without loss of
generality to the first stream n = 1 and omit the index in the
following. Let pk be the power allocated to user k within one
block, that is, pk = E[|xk|2]. We assume a short-term power
constraint, that is,

∑K
k=1 pk ≤ P. The noise power at the

receivers is σ2. The transmit power is distributed uniformly
over the nT transmit antennas, and each data stream has an
effective power pk/nT . We incorporate this weighting into the
transmit SNR given by ρ = P/nTσ2.

The mobiles feed back their scalar channel quality
indicators, that is, their fading coefficient a1, . . . , aK to the
base and we assume these numbers are perfectly known at
the base station. As such, the base has perfect information
about the channel norm but not about the complete fading
vectors.

2.2. Channel Model. The channel vectors h1, . . . ,hK are
modeled as independently zero-mean complex Gaussian
distributed vectors with covariance matrix ckI in rich
multipath environment. The variance ck depends mainly on
the distance of the user to the base, and it is called average
channel power. Therefore, the fading coefficients α1, . . . ,αK
are independently χ2-distributed with nT complex degrees of
freedom weighted by the average channel power c1, . . . , cK ,
that is, using independent standard χ2

nT -distributed random
variables w1, . . . ,wK , the fading coefficients are expressed as
αk = ckwk.

2.3. Measure of User Distribution. The distance of the mobile
k to the base station is determined by the average channel
power ck. In the following, we refer to the vector of average



EURASIP Journal on Wireless Communications and Networking 3

channel powers c = [c1, . . . , cK ] as the user distribution. In
order to guarantee a fair comparison between different user
distributions, we constrain the sum variance to be equal to
the number of users, that is,

∑K
k=1ck = K . Without loss

of generality, we order the users in a nonincreasing way
according to their fading variances, that is, c1 ≥ c2 ≥ · · · ≥
cK . The constraint regarding the sum of the fading variances
verifies that we compare scenarios in which the channel
carries the same average sum power. We need the following
definitions [21].

Definition 1. For two vectors x, y ∈ Rn, one says that the
vector x majorizes the vector y and writes x � y if

∑m
k=1xk ≥

∑m
k=1yk for m = 1, . . . ,n−1 and

∑n
k=1xk =

∑n
k=1yk (note that

sometimes majorization is defined by the sum of the smallest
m components [22]).

The next definition describes a function Φ which is
applied to the vectors x and y with x � y.

Definition 2. A real-valued function Φ defined on A ⊂ Rn

is said to be Schur convex on A if from x � y on A follows
Φ(x) ≥ Φ(y). Similarly, Φ is said to be Schur concave on A if
from x � y on A follows Φ(x) ≤ Φ(y).

Majorization is a useful tool to study the impact
of vectors which can be partially ordered. The common
monotony properties of scalar functions correspond to the
Schur-convex property of vector functions. The reason for
the term “Schur-convex” instead of “Schur-monotone” is
that every symmetric and convex vector function is Schur-
convex. Majorization is a large and active area of research in
linear algebra, with entire books [21] devoted to its theory
and application.

It is worth mentioning that majorization induces only a
partial order on vectors with more than two components,
that is, not all possible vectors can be compared with each
other. This is due to the fact that vectors with more than two
components cannot be totally ordered. However, a sufficient
number of vectors can be compared. Also, the extreme cases
can be used for comparison with any other vector. For more
information about this measure of user distribution and its
application see [23, Section 4.2.1].

2.4. High-SNR Measures S∞ and L∞. The quantitative
performance is analyzed using the high-SNR offset concept
from [24]. Denote by C(ρ) the average throughput as a
function of the SNR. The two high-SNR measures are
introduced as follows:

S∞ = lim
ρ→∞

C(ρ)
log(ρ)

,

L∞ = lim
ρ→∞

(

log(ρ)− C(ρ)
S∞

)

.

(2)

The measures S∞ and L∞ are referred to as high-SNR
slope and the high-SNR power offset, respectively. At
high SNR, the average throughput behaves like C(ρ) =

S∞((ρ[dB]/3dB)−L∞) +O(1). For convenience, these high-
SNR measures are defined in 3 dB units. For further discus-
sion, see [24, Section 2]. These two high-SNR measures are
useful if two systems are compared which differ either in their
multiplexing gain, that is, the slope of the average throughput
curve at high SNR, or which have equal S∞ but are shifted at
high SNR.

2.5. Types of (Channel Aware) Scheduling. Since the base
station has only partial CSI in form of the channel norm, we
restrict all scheduling strategies to TDMA-based scheduling.
From the single-antenna downlink, it is well known that if
perfect CSI is available at the base station, the sum rate is
maximized by single-user transmission to the best user only
[1], that is, TDMA achieves the sum capacity. This result
leads to the notion of multiuser diversity and the concept
of opportunistic communication [2]. This scheduler is called
MTS, and the achievable average sum rate is given by

RMT
sum = E

[

log
(

1 + ρ max
1≤k≤K

∥

∥hk
∥

∥

2
)]

. (3)

Note that the average sum rate of the MTS can be written in
integral representation as

RMT
sum =

∫∞

0

ρ

1 + ρt

[

1−
K
∏

k=1

(

1− Γ
(

nT ,
(

t/ck
))

Γ(nT)

)

]

dt, (4)

using the incomplete gamma function Γ(a, z) =
∫∞
z exp(−t)ta−1dt. The case with single-antenna base

and symmetrically distributed users (c = 1) is studied in
[25]. The MTS is unfair from a user perspective because
mobiles at the cell edge have less probability to be served.

The opposite type of scheduler is the round robin
scheduler (RRS). It is not channel aware but it minimizes the
average worst-case delay, that is, the average time until every
user has been served at least once. The average sum rate is
given by

RRR
sum = E

[

1
K

K
∑

k=1

log
(

1 + ρ‖hk‖2)
]

= E

[

1
K

K
∑

k=1

log
(

1 + ρckwk
)

]

.

(5)

Note that (5) can be rewritten for nT = 1 in closed form as

RRR
sum =

1
K

K
∑

k=1

Ei
(

1,
1
ρck

)

exp
(

1
ρck

)

, (6)

where the exponential integral is given by Ei(a, x) =
∫∞

1 exp(−tx)t−adt.
These two schedulers are the two most extreme cases.

The MTS maximizes the average sum rate, whereas the
RRS minimizes the average worst-case delay. A compromise
between the two is the proportional fair scheduler (PFS)
[2]. For the analysis, we use the so-called relative SNR
scheduler. The user is served which has the highest ratio of
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the instantaneous rate to average rate. Hence, the achievable
sum rate is given by

RPF
sum = E

[

log
(

1 + ρ
∥

∥hk∗
∥

∥

2)]

with k∗ = arg max
1≤k≤K

∥

∥hk
∥

∥

2

ck
.

(7)

In reality, the average transmission rate is updated from
transmission interval to transmission interval. Here, we use
the ergodic formulation of the scheduler (let the window
length tc → ∞). Note that (7) can be rewritten as

RPF
sum =

1
K

K
∑

k=1

E
[

log
(

1 + ρck max
1≤l≤K

wl

)]

, (8)

because the scheduling probability of all users is equal to 1/K .
For nT = 1, (8) can be rewritten in closed form as

1
K

K
∑

k=1

K
∑

l=1

(−1)l−1

⎛

⎝

K

l

⎞

⎠Ei
(

1,
l

ρck

)

e(l/ρck). (9)

Another interesting channel-aware scheduler is proposed
in [7]. The one-round version [26] of the relative oppor-
tunistic round robin scheduler (ORS) guarantees the same
average worst-case delay as the RRS but exploits a certain
amount of multiuser diversity. It consists of K rounds and
initializes the set of available users S with S = {1, . . . ,K}.
Within each step, the relative best user maxk∈S(‖hk‖2/ck) out
of the set of available users is picked and removed from the
set. After K steps, it is guaranteed that all users were active at
least once.

For our analysis, we need the representation in the
following lemma.

Lemma 1. The average sum rate of the ORS (13) can be
written as

ROR
sum =

∫∞

0

[

1− 1
K2

K
∑

n=1

K
∑

i=1

(

1− Γ
(

nT ,
(

t/ci
))

Γ(nT)

)n]

· ρ

1 + ρt
dt.

(10)

Proof. The CDF of the relative ORS is derived for nT = 1 in
[27, Equation (6)] and is given by

P(t) = 1
K2

K
∑

n=1

K
∑

i=1

(

1− e−(t/ci)
)n
. (11)

For general nT > 1, it reads

P(t) = 1
K2

K
∑

n=1

K
∑

i=1

(

1− Γ
(

nT ,
(

t/ci
))

Γ(nT)

)n

. (12)

We use the integration by parts rule
∫ b
a f (x)g′(x)dx =

| f (x)g(x)|ba −
∫ b
a f

′(x)g(x)dx. Now, identify f (x) = log(1 +
ρx) and g(x)′ = p(x), respectively, with the pdf of the
relative ORS p(x). Choose carefully g(x) = P(x) − 1 to
assure existence of the first part. Then, we obtain finally the
representation in (10).

The sum rate performance for nT = 1 can be further
simplified as in [27, Equation (8)] to obtain the closed form
expression

ROR
sum =

1
K2

K
∑

n=1

n
K
∑

i=1

n−1
∑

j=0

⎛

⎝

n− 1

j

⎞

⎠ (−1) j

· e
((1+ j)/ci)

1 + j
Ei
(

1,
1 + j

ci

)

.

(13)

With the sum rate expressions in (4), (5), (8), and (10),
we are now ready for the analysis of the user distribution c in
the next section.

3. Analysis of SumRate Performance

In this section, we analyze the impact of the user distribution
on the sum rate performance of the four scheduler. One
main question is whether the standard assumption about
a symmetric user distribution, which is made often for
simplification, leads to an upper or lower bound on the real
system throughput. First, we present the theoretical results,
and then we discuss their meaning in the paper context.

3.1. Schur-Convexity and Schur-Concavity Properties. The
following result is provided in [28] for nT = 1 and
restated and proved here for nT > 1. It states that a more
asymmetrical user distribution increases the average sum
rate with MTS.

Theorem 1. Let c and d be two different average user powers.
The average sum rate of the MTS is Schur-convex with respect
to user powers c and d, that is,

c � d =⇒ RMT
sum(c) ≥ RMT

sum(d). (14)

The proof can be found in [28, Theorem 1] for the single-
antenna nT = 1 case. We present in Appendix A the more
general proof for convenience.

The impact of the user distribution on the performance
of the RRS is analyzed in the next result.

Theorem 2. The average sum rate of the RRS is Schur-concave
with respect to the vector of average user powers c, that is,

c � d =⇒ RRR
sum(c) ≤ RRR

sum(d). (15)

Proof. Define the average sum rate as a function of c as

RRR
sum(c) = 1

K

K
∑

k=1

E
[

log
(

1 + ρckwk
)]

, (16)

and check Schur’s condition [23] directly

∂RRR
sum(c)
∂c1

− ∂RRR
sum(c)
∂c2

= E
[

ρw1

1 + ρc1w1

]

− E
[

ρw2

1 + ρc2w2

]

≤ 0.

(17)
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The impact of the user distribution on the performance
of PFS is derived analogously in Theorem 3.

Theorem 3. The average sum rate of the PFS is Schur-concave
with respect to the vector of average user powers c, that is,

c � d =⇒ RPF
sum(c) ≤ RPF

sum(d). (18)

Proof. Start from the representation in (8) and check Schur’s
condition

∂RPF
sum(c)
∂c1

− ∂RPF
sum(c)
∂c2

= 1
K
E
[

ρc1max1≤l≤Kwl

1 + ρc1max1≤l≤Kwl

]

− 1
K
E
[

ρc2max1≤l≤Kwl

1 + ρc2max1≤l≤Kwl

]

≤ 0.

(19)

Finally, the impact of the user distribution on the sum
rate performance of ORS is characterized in the next result
which is proved in Appendix B.

Theorem 4. The average sum rate of the ORS is Schur-concave
with respect to the vector of average user power c, that is,

c � d =⇒ ROR
sum(c) ≤ ROR

sum(d). (20)

3.2. Discussion of Schur Properties. Let us restate the results
from the last section in words. The sum rate of MTS improves
with more asymmetrically distributed users. The sum rate
of RRS, ORS, and PFS decreases with more asymmetrically
users. Hence, the four results indicate that the common
assumption about symmetrically distributed users leads to
the following.

(1) A lower bound to the sum rate performance of MTS.

(2) An upper bound to the sum rate performance of RRS,
ORS, and PFS.

This implies that a correct analysis even in terms of the
sum rate does always require assumptions on the user
distribution. In conclusion, there is only one scheduler which
improves for asymmetrically distributed users, namely, the
MTS. The average sum rates of the other scheduler, PFS,
ORS, and RRS, decrease with more asymmetrically dis-
tributed user.

4. Fairness Analysis

In this section, the fairness properties of the four schedulers
are analyzed. First, the average worst-case delay is proposed
as a proper physical layer motivated delay measure. The
impact of the service probabilities of the users on the worst-
case delay is studied. Then, two other common fairness
measures are reviewed, namely, Jain’s fairness index and the
dispersion. It is shown that all three measures are Schur-
convex functions with respect to the service probabilities of
the users. Finally, the connection between user distribution
and service probability and delay is discussed.

4.1. Analysis of AverageWorst-Case Delay. In order to capture
the fairness of the different scheduler, the average worst-case
delay is considered. The average worst-case delay E[Dm,K ]
measures the average number of transmissions that are
needed until all K users have been active at least m times.
We define D1 = E[D1,K ].

The two most fair schedulers are the RRS and ORS. Both
have an average worst-case delay of mK because all users are
guaranteed to be active within a block of K transmissions.
Especially, it takes K transmissions until every users has
transmitted exactly once, that is,

DRRS
1 = DORS

1 = K. (21)

The PFS normalizes the users channels. Therefore, the
probability that user k being active is, independently of k,
1 ≤ k ≤ K , equal to 1/K . Especially, it is independent of the
user distribution c. The result from [29] applies for m = 1:

DPFS
1 = K

∫∞

0
1− (

1− exp(−x)
)K

dx. (22)

Note that (22) can be written as

DPFS
1 = K

(

Ψ(K + 1) + γ
)

, (23)

with the Ψ-function [30, 6.3] and Euler’s constant γ [30,
6.1.3].

The analysis of the MTS is more difficult. Rewrite the
average worst-case delay [12, Section 3.3] without dropping
probability as

DMTS
1 = n

∫∞

0

(

1−
K
∏

k=1

(

1− Γ
(

m,dkt
)

Γ(m)

)

)

dt. (24)

For m = 1, the expression in (24) says how many packets
are transmitted on average until every user has at least
transmitted one. The coefficients dk in (24) are related to the
probability that user k is chosen πk = dk/K . For the MTS, we
prove the following result.

Theorem 5. The average worst-case delay E[D1,K ] is Schur-
convex with respect to d, that is,

d1 � d2 −→ DMTS
1 (d1) ≥ DMTS

1 (d2). (25)

Proof. In order to check Schur’s condition, [23] consider

∂E
[

D1,K
]

(d)
∂d1

− ∂E
[

D1,K
]

(d)
∂d2

= n
∫∞

0

K
∏

l=3

(

1− exp
(− dlt

))

g
(

t,d1,d2
)

dt,

(26)

with g(t,d1,d2) = t exp(−d2t)(1 − exp(−d1t)) −
t exp(−d1t)(1 − exp(−d2t)) ≥ 0 for all d1 ≥ d2, and
t ≥ 0. It follows that the integral in (24) is greater than or
equal to zero.

Theorem 5 formally states the intuitive fact that the
average worst-case delay grows if some users are less frequent
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active on average. If the probability that user k is active is
equal to 1/K , independently of k, then the expression in
(24) is minimized. Note that a similar analysis has been
performed in the different context of birthday matching in
[31].

4.2. Jain’s Fairness Index and Dispersion. In [10], a quanti-
tative measure of fairness is introduced. It is called Jain’s
fairness index (JFI) or global fairness index (GFI) [13].
Define xk as the amount of a resource that is distributed to
user k. Then, JFI is defined as [10, Equation (2)]

JFI =
(

(1/K)
∑K

k=1 xk
)2

(1/K)
∑K

k=1 x
2
k

. (27)

Let us specialize this general definition to the case in which
one resource is one transmission. The JFI is averaged over L
transmissions [27]

JFI(L) = EL
(

(1/K)
∑K

k=1 xk
)2

EL(1/K)
∑K

k=1 x
2
k

. (28)

Denote by πk the probability that user k is active within L
transmissions, then xk = πkL. Collect π = [π1, . . . ,πK ]. Let
L → ∞ to obtain the long-term average JFI as

JFI =
(

(1/K)
∑K

k=1 πk
)2

(1/K)
∑K

k=1 π
2
k

. (29)

Note that
∑K

k=1πk = 1, and hence (29) leads to the dispersion
of p:

Dsp(π) = 1
∑K

k=1π
2
k

. (30)

Interestingly, this measure of fairness is closely related to
majorization theory. The function in (30) is symmetric and
concave in π and therefore Schur concave [23, Proposition
2.8]. A function is called symmetric if the argument vector
can be arbitrarily permuted without changing the value of
the function.

Corollary 1. The dispersion is a Schur-concave function of the
vector π, that is,

π1 � π2 =⇒ Dsp
(

π1
) ≤ Dsp

(

π2
)

. (31)

4.3. Connection of User Distribution, Service Probability, and
Delay. From the results in the last sections, it follows that
the impact of the user location on the different fairness
measures depends on the resulting service probability vector
π. Therefore, we have to map the user distribution vector c
to the service probability vector π. The concrete mapping
depends on the chosen scheduler. For PFS, the service
probabilities of all users are equal to πk = 1/K and thus
independent of c.

In order to apply majorization theory to the analysis
of the average worst-case delay as a function of the user

distribution, we have to transfer the partial order for user
distributions to the partial order for probability that a user
k is picked.

Define the vector of probabilities that user k is picked π
as a function of the user distribution c, that is,

πk(c) = Pr
[

ckwk ≥ max
l /= k

clwl

]

=
∑

π∈P \k

∫∞

aπK−1=0

∫∞

aπK−2=aπK−1

· · ·

·
∫∞

ak=aπ1

K
∏

k=1

anT−1
k e−(ak/Γ(nT )ck)

ck
da.

(32)

The RHS in (32) contains all possible disjunct events, that
is, all permutations, such that ckwk ≥ cπ1wπ1 ≥ cπ2wπ2 ≥
· · · ≥ cπK−1wπK−1 . The sum over all probabilities, that is,
integrals with certain limits, gives the probability that user
k is picked.

Unfortunately, the next result is an impossibility result.
It shows that it is not possible to say that if c � d then
automatically π(c) � π(d).

Corollary 2. Themapping from the vector of user distributions
to the vector of service probabilities is not order preserving with
respect to the partial order majorization.

Proof. We provide a counterexample. Consider the user
distribution vectors c= [5, 3, 2]T and d= [4, 4, 2]T and nT =
1. The resulting activity probabilities computed according
to (32) are given by π(c) = [0.6428, 0.1786, 0.1786]T and
π(d) = [0.4167, 0.4167, 0.1666]T . Majorization cannot be
used to compare these two vectors because π1(c) > π2(d) but
π1(c) + π2(c) < π1(d) + π2(d).

Even though the connection between user distribution
and service probability is not order preserving with respect
to the partial order of majorization, it does not imply
that the average worst-case delay is not a Schur-convex or
Schur-concave function of the user distribution. Due to the
complicated dependency of the average worst-case delay and
the user distribution via (32), the following observation is
stated as a conjecture.

Conjecture 1. The average worst-case delay of MTS as a
function of the user distribution is Schur-convex, that is, c �
d⇒ E[D1,K (c)] ≥ E[D1,K (d)].

5. Asymptotic Characterizations

In this section, we characterize the average sum rate of the
different scheduling schemes for high SNR or for a large
number of users. The scaling laws of the schemes are derived
as a function of the user distribution. These results provide
more quantitative but closed form expressions for the sum
rate performance of the four schedulers.



EURASIP Journal on Wireless Communications and Networking 7

5.1. High-SNR Behavior. The high-SNR slope S∞ as defined
in (2) for all four scheduling schemes is equal to one because

S∞ = lim
ρ→∞

∫∞
0 log(1 + ρx)pdf (x)dx

log(ρ)

=
∫∞

0
lim
ρ→∞

log(1 + ρx)
log(ρ)

pdf (x)dx

=
∫∞

0
pdf (x)dx = 1.

(33)

It is allowed to swap integration and limit by applying the
dominated convergence theorem. In general, any TDMA
scheme could have at most a high-SNR slope of one. The
high-SNR power offset is different for the four schedulers.
It is derived in the following result.

Theorem 6. The high-SNR power offset is characterized for
four cases as follows.

(1) For MTS, the high-SNR power offset is bounded from
below and above by

γ + log
(

Γ(1 + nT
)1/nT )−

K
∑

k=1

(−1)k−1

⎛

⎝

KnT

k

⎞

⎠ log(k)

≥ L∞
MT ≥ γ − log

(

KnT
)

.

(34)

For nT = 1, the lower bound in (34) is equal to the
lower bound result in [23, Theorem 2].

(2) For RRS, the high-SNR power offset as a function of the
user distribution is given by

L∞
RR (c) = 1

K

K
∑

k=1

−Ψ
(

nT
)− log

(

ck
)

. (35)

For nT = 1, we obtain the closed form expression
(compare to [15])

L∞
RR (c) = 1

K

K
∑

k=1

γ − log
(

ck
)

. (36)

(3) For PFS, the high-SNR power offset as a function of the
user distribution is given by

L∞
PF (c) = −Ψ(

nT
)− 1

K

K
∑

k=1

K
∑

l=1

(−1)l−1

⎛

⎝

K

l

⎞

⎠ log
(

l

ck

)

.

(37)

(4) For ORS, the high-SNR power offsets as a function of
the user distribution is given by

L∞
OR (c) = 1

K2

K
∑

n=1

n
K
∑

k=1

n−1
∑

j=0

⎛

⎝

n− 1

j

⎞

⎠

(−1) j

1 + j

·
(

γ + log
(

1 + j

ck

))

.

(38)

The proof of Theorem 6 follows similar lines as in
[32, Theorem 2] and is, therefore omitted. Note that the
Schur convexity of (36) can be directly observed and this
approves the result in (15). However, in (37) and (38), the
Schur convexity cannot be directly observed because of the
alternating sum.

The high-SNR power offsets fulfill the following inequal-
ity chain:

L∞
MT ≤ {

L∞
PF,L∞

OR} ≤ L∞
RR. (39)

The order of PFS and ORS depends on the user distribution
and number of antennas at the base station scenario. Note
that the average worst-case delay does not scale with the SNR.

5.2. Scaling with Number of Users. First, consider the case in
which the users are symmetrically distributed, that is, c = 1.
The scaling behavior with K → ∞ for fixed SNR ρ can
be easily shown by considering a simple upper and lower
bounds on the average sum rate. The average sum rate of RR
does not scale with K at all.

Corollary 3. For symmetrically distributed users c = 1, the
average sumrates of MTS, PFS, and ORS scale for large K with
log(K), that is,

lim
K→∞

RMT
sum(K)

log(K)
= lim

K→∞
RPF

sum(K)
log(K)

= lim
K→∞

ROR
sum(K)

log(K)
= 1.

(40)

The case in which the users are not symmetrically
distributed is discussed in the numerical results section. The
scaling of the average worst-case delay with the number of
users is also of interest and is thus studied in Corollary 4. It
follows directly from (21) and (23).

Corollary 4. For symmetrically distributed users, the average
worst-case delay scales linearly with K for RRS and ORS. For
MTS and PFS, it scales as K log(K), that is,

lim
K→∞

DRRS
1 (K)
K

= lim
K→∞

DORS
1 (K)
K

= 1,

lim
K→∞

DMTS
1 (K)

K log(K)
= lim

K→∞
DPFS

1 (K)
K log(K)

= 1.

(41)

The case in which the users are not symmetrically
distributed is discussed also in the numerical results section.
Note that the scaling law for MTS and PFS in (41) is the
best case as shown in Theorem 5, the case in which the users
are symmetrically distributed offers the lowest average worst-
case delay.

6. Fixed Rate Allocation and Long-Term
Power Constraint

In this section, we consider a certain communication
scenario which leads to a slightly modified performance
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function on the physical layer. Usually, the traffic is divided
into classes (see, e.g., traffic classes in [33]) which require
a certain SNR level to guarantee successful delivery of the
user contents. In the following, we study the behavior of the
sum rate under fixed rate allocations for the three schedulers
(MTS, RRS, and PFS) as a function of the user distribution
for comparison with the sum rate behavior from the last
section.

Let us assume that we have only one fixed transmission
rate R0 available, and each scheduled user obtains its
information packet with that rate. Therefore, a certain SNR
is needed for successful transmission. Denote the long-term
sum transmit power constraint at the base station as P	 , that
is,

Ea1,...,ak

[ K
∑

k=1

pk
(

a1, . . . , ak
)

]

≤ P	. (42)

We consider the three schedulers MTS, RRS, and PFS. The
power allocation at the base station for all three schedulers is
channel inversion under the long-term power constraint.

Theorem 7. The achievable sum rate for fixed rate transmis-
sion of the RRS is given by

RRR
sum, f x =

1
K

K
∑

k=1

log
(

1 +
ρP	

E
[(

1/ckwk
)]

)

. (43)

The achievable sum rate for fixed rate transmission of the
MTS is given by

RMT
sum, f x = log

(

1 +
ρP	

E
[(

1/max1≤k≤K ckwk
)]

)

. (44)

Finally, the sum rate for fixed rate transmission of the PFS
is given by

RPF
sum, f x =

1
K

K
∑

k=1

log
(

1 +
ρP	

E
[(

1/ckmax1≤k≤K wk
)]

)

. (45)

Proof. We will use one framework to derive the achievable
sum rate for fixed rate transmission [34]. Denote the
instantaneous channel power of the scheduled user as ζ .
Then, the instantaneous achievable rate is log(1 + ρζ p(ζ))
with power p(ζ) allocated. This instantaneous rate should be
equal to the fixed rate R0 under the average power constraint
in (42). We solve

R0 = log
(

1 + ρζ p(ζ)
)

(46)

for p(ζ) and normalize the constant cP with respect to the
long-term power constraint to obtain the optimal power
allocation

p(ζ) = cP
ζ
= P	

ζ

1
E[1/ζ]

. (47)

Equation (47) is simply channel inversion with long-term
power constraint, that is,

E
[

p(ζ)
] = P	E

[

1
ζ

]

1
E[1/ζ]

= P	. (48)

Inserting (47) into (46) yields

R0 = log
(

1 + ρ
P	

E[1/ζ]

)

. (49)

Then expressions in (43), (44), and (45) follow when we use
the effective channels ζ after scheduling.

The impact of the user location on the sum rate
performances is characterized in the following corollary.

Corollary 5. The sum rate of RRS with fixed rate constraint is
Schur concave with respect to c. The sum rate of PFS with fixed
rate constraint is Schur concave with respect to c.

The sum rates with fixed rate constraint and long-term
power constraint for RRS and PFS show the same behavior
as the sum rate with short-term power constraint.

Proof. We verify indirectly Schur’s condition for the RRS and
PFS and thereby leave the expectation unsolved. Both sum
rates RPF

0 and RRR
0 can be written as functions of the user

distribution c

ψ(c) = 1
K

K
∑

k=1

log
(

1 +
ρckP	
E[x]

)

(50)

for some random variable x. The function in (50) is
symmetric with respect to c. The sum of concave functions
in ck is Schur-concave (see, e.g., [23, Proposition 2.7] or [21,
3.C.1]).

Regarding the impact of the user distribution on the
MTS sum rate with fixed rates, we observe that the behavior
depends on the number of antennas and number of users.
We leave this for future research.

7. Numerical Simulations

In this section, we present illustrations which validate and
explain the theoretical results from the last sections. The
performance for the case with symmetrically distributed
users c = 1 is compared to the case with asymmetrically
users. For the asymmetrically user distribution, we choose
the exponential decaying model

ck = exp(−tk), and normalize
K
∑

k=1

ck = K. (51)

For K = 20 and t = 0.2, we obtain the user distribution

c = [3.6930, 3.0236, 2.4755, 2.0268, 1.6594, 1.3586,

1.1123, 0.9107, 0.7456, 0.6105, 0.4998, 0.4092,

0.3350, 0.2743, 0.2246, 0.1839, 0.1505, 0.1232,

0.1009, 0.0826].

(52)

In the numerical simulations, for each data point, 100 000
Monte Carlo runs are performed to compute the averages.
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Figure 1: Average sum rate, worst-case delay, and dispersion for
K = 20 symmetrically and asymmetrically distributed users.

7.1. General Results. In Figure 1, the average sum rate, the
average worst-case delay, and the dispersion are shown for
the four studied schedulers. In Figure 1(a), the users are
symmetrically distributed, that is, c = 1, whereas in Figure
1(b), the users are asymmetrically distributed according to
the model in (51) with t = 0.2. The results in Figure 1
illustrate the following observations. The average sum rate
of MTS increases with more asymmetrically distributed
users (compare to (14)), while the average sum rate of
all three other schedulers decreases (compare to (15),
(18), and (20)). However, PFS outperforms ORS for the
symmetrical scenario, whereas it is the other way round
for the asymmetrical scenario. Another observation is that
the average worst-case delay is more differentiated than
the dispersion. This underlines that the average worst-
case delay is better suited for fairness analysis than the
JFI-based dispersion. Finally, the average worst-case delay
for the asymmetrical scenario of the PFS and ORS tends
to grow without bound. Therefore, taking the tradeoff
between fairness and average sum rate into account, the
PFS and ORS perform reasonable well. PFS is advantageous
in symmetric scenarios whereas ORS performs better in
asymmetric scenarios.
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Figure 2: Average sum rate and worst-case delay versus number of
users for symmetrically distributed users.

7.2. Scaling with Number of Users. In Figures (2) and (3),
we show the average performance of the four scheduling
algorithms for symmetrically distributed as well as asymmet-
rically distributed users. The derived scaling laws in (40) and
(41) are confirmed. The interesting observation is that for the
asymmetrical case, PFS outperforms OFS for a small number
of users, whereas it is the other way round for large number
of users.

The average worst case delay for MTS and PFS
increases with asymmetrical user distribution as predicted
in Theorem 5. As soon as a single ck approaches zero, the
average worst-case delay approaches infinity. The round-
based schedulers RRS and ORS are robust against the
asymmetrical user distribution.

The main observation in this section is that for practical
scenarios in which fairness is important as well as users are
randomly distributed within the cell, ORS clearly outper-
forms PFS. Note that the results presented here hold for a
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Scaling with number of users (assymetrical with t = 0.2)
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Figure 3: Average sum rate and worst-case delay versus number of
users for asymmetrically distributed users.

static scenario in which we place the users only once inside
the cell and simulate the small-scale fading. Mobility as well
as traffic models is left for further research.

7.3. Multiple Antenna Case—OSTBC. The application of
OSTBC yields to a tradeoff between the code rate and the
number of degrees of freedom of the channel gain. The code
rate rC decreases with the number of antennas, whereas the
number of degrees of freedom of the χ2 distributed channel
gain increases. For an OSTCB with nT transmit antennas, it
is shown in [35] that the maximum achievable code rate is
given by

rC(nT) =
⌊(

nT + 1
)

/2
⌋

+ 1
2
⌊(

nT + 1
)

/2
⌋ . (53)
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Figure 4: Average sum rate/worst-case delay tradeoff, nT =
{1, 2}; K = 4; SNR = 20 dB.

The code rate rC(nT) starts at rC(1) = rC(2) = 1 and
decreases to limnT →∞ rC(nT) = 1/2. Therefore, we restrict the
numerical simulations to the case nT = 2.

In Figure 4, the achievable average sum rate versus
average worst-case delay tradeoff is shown for a two antenna
BS with four users at SNR = 20 dB for the four schedulers.
The PFS is operated at ten window length operating
points tc= 2k, k = 1, . . . , 10. The RRS has lowest delay,
whereas the MTS has largest delay but best performance.
The closure of the convex hull of all operating points
gives the achievable sum rate/delay region. The dashed
line shows the single-antenna case. It can be observed
that two antennas increase average sum rate as well as
decrease the average worst-case delay significantly. Note that
no additional (spatial) feedback is required to achieve this
gain.

8. Conclusions

In this paper, we proposed an approach to analyze qualita-
tively the tradeoff between system throughput and fairness
in a multiuser multiple antenna downlink transmission
system. Four representative (three of them channel aware)
schedulers were studied for different user distributions
using majorization theory. The sum rate of MTS improves
with asymmetrical user distribution, whereas the sum rate
of all other schedulers improves with symmetrical user
distribution. MTS and RRS serve as upper and lower bounds
on throughput and lower and upper bounds on worst-
case delay, respectively. The throughput-delay tradeoff of
the four schedulers is characterized; if fairness as well as
performance is important, the optimal choice will depend
on the user distribution and the number of users. Finally, the
gain of using multiple antennas without increased feedback
overhead at the base station is illustrated.
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Appendices

A. Proof of Theorem 1

Proof. In the proof, we verify Schur’s condition directly.
Therefore, we need the first derivative of RMT

sum with respect
to c1 and c2 given as

∂RMT
sum

∂c1
=

∫∞

0

ρt

1 + ρt

K
∏

k=3

(

1− Γ
(

nT ,
(

t/ck
))

Γ
(

nT
)

)

·
(

1− Γ
(

nT ,
(

t/c2
))

Γ
(

nT
)

)

(tnT−1/c1
)

c2
1Γ

(

nT
) exp

(−t
c1

)

dt,

∂RMT
sum

∂c2
=

∫∞

0

ρt

1 + ρt

K
∏

k=3

(

1− Γ
(

nT ,
(

t/ck
))

Γ
(

nT
)

)

·
(

1− Γ
(

nT ,
(

t/c1
))

Γ
(

nT
)

)

(tnT−1/c2
)

c2
1Γ

(

nT
) exp

(−t
c2

)

dt.

(A.1)

Define the two functions

f (ρ, t, c) = ρt

1 + ρt

K
∏

k=3

(

1− Γ
(

nT ,
(

t/ck
))

Γ
(

nT
)

)

,

g(t, c1, c2) =
(

1− Γ
(

nT ,
(

t/c2
))

Γ
(

nT
)

)
(

t/c1
)nT−1

c2
1Γ

(

nT
) exp

(

− t

c1

)

−
(

1− Γ
(

nT ,
(

t/c1
))

Γ
(

nT
)

)
(

t/c2
)nT−1

c2
2Γ

(

nT
) exp

(

− t

c2

)

,

(A.2)

in order to express the difference of the first derivatives of the
sum rate of the MTS as

∂RMT
sum

∂c1
− ∂RMT

sum

∂c2
=

∫∞

0
f (ρ, t, c)g(t, c1, c2)dt. (A.3)

The following properties of the functions f and g are easily
verified; f is monotonic increasing from zero to one. The
function g is g(t = 0) = 0, has one zero at t∗ : g(t∗) = 0, and
is negative for all t < t∗ and positive for all t > t∗. Therefore,
we can lower bound (A.3) by using the zero t∗ as

∂RMT
sum

∂c1
− ∂RMT

sum

∂c2
≥ f (ρ, t∗, c)

∫∞

0
g
(

t, c1, c2
)

dt. (A.4)

Finally, the integral in (A.4) can be computed in closed form
∫∞

0
g
(

t, c1, c2
)

dt = 1
2

1
c1c2Γ

(

1 + nT
)√

π

·
{

2
√
πΓ

(

nT + 1
)[

c2 − c1
]

+ Γ
(

nT + 1/2
)

4
nT
(

c1

c2

)nT

·
[

c1·2F1

(

nT , 2nT ; 1 + nT ;−
(

c1

c2

))

− c2·2F1

(

nT , 2nT ; 1 + nT ;−
(

c2

c1

))]}

,

(A.5)

where 2F1(a, b; c; z) is the Gauss hypergeometric function
[30, Chapter 15]. For single-antenna BS, we set nT = 1 to
obtain

G
(

c1, c2, 1
) = 0, (A.6)

which is in perfect agreement with the result and its
proof in [28]. Since, the function G(c1, c2,nT) is monotonic
increasing with nT , this implies that

∂RMT
sum

∂c1
− ∂RMT

sum

∂c2
≥ f (ρ, t∗, c)G

(

c1, c2,nT
) ≥ 0, (A.7)

which verifies Schur’s condition for Schur convexity.

B. Proof of Theorem 4

Proof. The proof is similar to the proof in Appendix A. The
difference is that we have two sums in the integral instead
of the product. Starting from the representation in (10), the
difference of the first partial derivatives with respect to c1 and
c2, respectively, is computed

∂ROR
sum

∂c1
=

∫∞

0

ρ

1 + ρt

1
K2

·
K
∑

k=1

(

1− (

Γ
(

nT , t/c1
)

/Γ
(

nT
)))k

ktnT exp
(− t/c1

)

Γ
(

nT
)− Γ

(

nT , t/c1
)

cnT+1
1

dt,

∂ROR
sum

∂c2
=

∫∞

0

ρ

1 + ρt

1
K2

·
K
∑

k=1

(

1− (

Γ
(

nT , t/c2
)

/Γ
(

nT
)))k

ktnT exp
(− t/c2

)

Γ
(

nT
)− Γ

(

nT , t/c2
)

cnT+1
2

dt.

(B.1)

Define the two functions

φ(ρ, t) = ρ

1 + ρt
,

γ
(

t, c1, c2, k,nT
)

=
(

1− (

Γ
(

nT , t/c1
)

/Γ
(

nT
)))k

ktnT exp
(− t/c1

)

Γ
(

nT
)− Γ

(

nT , t/c1
)

cnT+1
1

−
(

1− (

Γ(nT , t/c2
)

/Γ
(

nT
)))k

ktnT exp
(− t/c2

)

Γ
(

nT
)− Γ

(

nT , t/c2
)

cnT+1
2

,

(B.2)

in order to rewrite the difference of the first derivatives as

Δ = ∂ROR
sum

∂c1
− ∂ROR

sum

∂c2

= 1
K2

K
∑

k=1

∫∞

0
φ(ρ, t)γ

(

t, c1, c2, k,nT
)

dt.

(B.3)

The properties of the functions φ and γ are as follows. φ is
monotonic decreasing with respect to t, and γ has similar
properties as the function g in the proof in Appendix A.
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γ(t = 0) = 0, it has on zero at t∗ : g(t∗) = 0, it is negative for
all t < t∗ and positive for all t > t∗. Therefore, we obtain an
upper bound on Δ in (B.3) as

Δ ≤ 1
K2

K
∑

k=1

φ(ρ, t∗)
∫∞

0
γ
(

t, c1, c2, k,nT
)

dt = 0, (B.4)

because
∫∞

0 γ(t, c1, c2, k,nT)dt = 0. This verifies Schur’s
condition for Schur concavity and completes the proof.
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