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1. INTRODUCTION

Selection combining (SC) diversity is one of the simplest
available schemes used to combat the detrimental effect of
fading. It has been very well studied in the literature over dif-
ferent models of fading channels (see [1, Section 9.8] and
the references therein). Also, the performance of such di-
versity scheme in presence of cochannel interference (CCI)
has been investigated under a variety of assumptions in the
literature. For example, in [2], the performance of such
scheme over the Nakagami/Rayleigh (by Nakagami/Rayleigh,
wemean that the desired signal is subject to Nakagami fading
while the cochannel interferers are subject to Rayleigh fading.
This shorthand will be used throughout the paper) and the
Rice/Rayleigh fading environments with quadrature phase-
shift keying (QPSK) modulation has been investigated. Also,
the performance of the dual-branch version of this receiver in
presence of a dominant Rayleigh-faded interferer with amin-
imum signal power constraint was analyzed in [3]. Very re-
cently, its performance under different selection criteria has
been investigated in the Nakagami/Rayleigh fading environ-
ment in [4].

The Weibull distribution has been proposed decades ago
as a possible fading model for radio environments [5–7]. It
provides flexibility in describing the fading severity of the

channel and subsumes special cases such as the Rayleigh fad-
ing. The appropriateness of the Weibull distribution to de-
scribe the fading phenomenon on wireless channels has been
recently asserted by experimental data collected in the cel-
lular band by two independent groups in [8, 9]. As a result,
in the past few years, a renewed interest has been expressed
in studying the characteristics of the Weibull fading channel
and the performance of different wireless receivers operating
on such channel. This is evident by numerous publications
covering different aspects of this fading model. In particu-
lar, in [10], the second-order statistics and the capacity of the
Weibull channel have been derived. The performance of var-
ious receive diversity systems has been extensively studied in
[11–19] but with no CCI present. Also, we have analyzed the
performance of cellular networks with composite Weibull-
lognormal faded links in the presence of CCI in terms of out-
age probability in [20].

In this paper, we analytically evaluate the performance
of SC diversity in the presence of CCI in terms of outage
probability under the Weibull/Weibull fading scenario, in
which both the desired as well as the interfering signals are
Weibull faded. Due to the interference-limited nature of cel-
lular systems, the background noise can be neglected and
thus, the outage probability is defined as the probability that
the signal-to-interference ratio (SIR) drops below a specific
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threshold γth. This threshold is usually chosen to satisfy a
specific quality-of-service (QoS) metric. In this work, we use
two selection criteria at the diversity receiver: maximum de-
sired signal power and maximum SIR and we investigate the
effect of the fading parameters of the desired and interfering
signals, the number of interferers and the number of diversity
branches on the system performance. Our Analytical results
are verified via Monte Carlo simulations.

The rest of the paper is organized as follows. In the fol-
lowing section, we briefly outline our system and channel
models and state our assumptions. In Section 3, we analyze
the performance of SC in the Weibull/Weibull fading envi-
ronment in terms of the outage probability. Our numerical
results are then presented in Section 4 and compared to re-
sults obtained via Monte Carlo simulations. Finally, the pa-
per is concluded in Section 5.

2. SYSTEMAND CHANNELMODEL

As in [2, 4, 21], we consider a cellular network where K
equal-power interfering signals share the same bandwidth
with the desired user (assumed to be the 0th). Binary phase-
shift keying (BPSK) with raised cosine pulse shaping is as-
sumed for all the signals and all the receivers are equipped
with an L-branch SC diversity scheme. The received signal
at the jth branch of the desired user is thus given in [4] as
follows:

r j(t) =
√
2P0TR0, j sd(t) cos

(
ωct
)

+
K∑

i=1

√
2PTRi, j si

(
t − τj

)
cos
(
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(
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)
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)
,

j = 1, 2, . . . ,L,
(1)

where

sd(t) =
∞∑

k=−∞
a[k]gT(t − kT),

si(t) =
∞∑

k=−∞
bi[k]gT(t − kT),

(2)

P is the transmitted power of any interferer, ωc is the car-
rier angular frequency, T is the symbol duration. gT(t) de-
notes the transmitter signal baseband pulse whose energy is
normalized to unity, a[k], bi[k] ∈ {+1,−1} with equal prob-
abilities and τi represents the symbol timing offset between
the ith user and the desired one, which is assumed to be uni-
formly distributed over [0,T). In (1), R0, j and Ri, j are the
fading amplitudes of the desired and the ith interfering sig-
nal, respectively, both on the jth branch. We assume that the
two sets {R0, j , j = 1, . . . ,L} and {Ri, j , i = 0, . . . ,K , j =
1, . . . ,L} are mutually statistically independent for all i, j and
each set of them is a set of independent and identically dis-
tributed (i.i.d.) random variables (RVs). The random phases
{θi, j , i = 0, . . . ,K , j = 1, . . . ,L} are also i.i.d., all uniformly
distributed over [0, 2π).

In this work, both the desired as well as the interfer-
ing signals are subject to Weibull fading, that is, {R0, j , j =
1, . . . ,L} ∼ Weibull (ms, γs) and {Ri, j , i = 0, . . . ,K , j =
1, . . . ,L} ∼ Weibull (mI , γI), in contrast with the typical
Rayleigh or Nakagami fading. The shorthand X ∼ Weibull
(m, γ) means that the RV X is Weibull distributed with pa-
rametersm and γ, for which the probability density function
(PDF), fX(x), is given by

fX(x) = m

γ
xm−1 exp

(
− xm

γ

)
(3)

and the cumulative distribution function (CDF), FX(x), is

FX(x) = 1− exp
(
− xm

γ

)
. (4)

Assuming that coherent detection is employed, the decision
statistic for the desired user data symbol a[0] on the jth
branch is given by [4] as follows:

Dj[0] =
√

P0T

2
a[0]R0, j +

K∑

i=1

√
PT

2
Ri, j cosφi, jρi, (5)

where φi, j = θi, j − ωcτi is a uniformly distributed RV over
[0, 2π), ρi =

∑∞
k=−∞ bi[k]g(−kT − τi) and g(·) is the pulse

shape at the receiver. The instantaneous SIR of the jth branch
is thus straightforwardly found in [4] as follows:

SIR j =
P0Z0, j

αPB
= P0Z0, j

αP
∑K

i=1 Yi, j
, (6)

where α = 1 − β/4, with β being the excess bandwidth of
the pulse shapes, Z0, j = R2

0, j , and Yi, j = R2
i, j cos

2(φi, j) =
Zi, j cos2(φi, j). We define the desired user average SIR as
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where E(·) is the expectation operator and Γ(·) is the
Gamma function.

3. OUTAGE PROBABILITY ANALYSIS

3.1. Maximumdesired signal power criterion

We first consider the case in which the receiver selects the
branch with the maximum desired signal power. The SIR at
the output of the diversity combiner is thus given by

SIR = P0A

αPB
, (8)

where A = max(Z0,1,Z0,2, . . . ,Z0,L). It is straightforward to
show that {Z0, j , j = 1, . . . ,L} ∼ Weibull (ms/2, γs) and, as-
suming independent and identically distributed (i.i.d.) diver-
sity branches, that the PDF of A is given by

fA(a) = d
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]L = msL
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L
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(9)
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where FZ(a) is the CDF of any Z0, j and
(
L
p

)
is the bi-

nomial coefficient. In (9), the equation on the second
line results from the use of the binomial theorem and
fX(a)|m→ms/2,γ→γs/(L−p) is the standard Weibull PDF in (3) af-
ter replacingm byms/2 and γ by γs/(L− p). The outage prob-
ability can now be calculated as
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∫∞
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(10)

where FB(·) is the CDF of B,ΦX(ω) � E(e jωX) is the charac-
teristic function (CF) of the RV X , and�(·) and �(·) denote
the real and imaginary parts, respectively. The second line in
the equation above results from the use of the Gil-Pelaez in-
version lemma [22] and the fact that the CF is effectively the
Fourier transform of the PDF, which is a real function, and
hence, its Fourier transform must have an even real part and
an odd imaginary one. Now, in order to evaluate (10),ΦA(ω)
and ΦB(ω) need to be evaluated. As for ΦA(ω), using (9), it
is straightforward to arrive at

ΦA(ω) =
L−1∑

p=0
(−1)L−1−p

(
L

p

)
MX

(
ms

2
,

γs
L− p

,− jω
)
, (11)

where MX(m, γ, s) = E(e−sX) is the moment-generating
function (MGF) of the RV X ∼ Weibull (m, γ), which has
been found in closed form in [10, equation (28)] in terms of
Meijer’s G function, Gm,n

p,q (·) [23, equation (9.301)] as

MX(m, γ, s) = m
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where � and k are the minimum integers chosen such that
m = �/k and Δ(n, ζ) = ζ/n, (ζ + 1)/n, . . . , (ζ + n− 1)/n.
Now, making use of the independence assumptions stated
earlier, one can obtain ΦB(ω) as ΦB(ω) =

∏K
i=1ΦYi, j (ω),

where ΦYi, j (ω) can be obtained as follows:
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where MZi, j (s) = MX(ms/2, γs, s) is the MGF of Zi, j . Now,
making use of the symmetry of the integral and using the

substitution x = cos2(φi, j), one gets

ΦYi, j (ω) =
2
π

∫ π/2
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The last integral in the previous equation has finite limits and
can be easily evaluated numerically. Furthermore, assuming
that | arg(− j)� |< ((� + k)/2)π, where � and k are the smallest
integers such that mI = �/k, ΦYi, j (ω) can also be obtained in
closed form, using [23, equation (9.31.2)] followed by [24,
equation (2.24.2.2)], as
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Now, the outage probability can be calculated using (10) in
conjunction with (11) and either (13) or (15).

3.2. Maximum SIR criterion

Wenow consider the scenario in which the receiver selects the
branch with the maximum SIR. Again, assuming i.i.d. diver-
sity branches, the outage probability is given by

Pout = Pr
(
max

{
SIR1, . . . , SIRL

}
< γth

)

= [Pr(SIR j < γth
)]L

.
(16)

The probability Pr(SIR j < γth) is exactly given by (10) af-
ter replacing the RV A with the RV Z0, j and noting that
ΦZ0, j (ω) =MX(ms/2, γs,− jω).

It is worth mentioning that the integrals in this paper,
which involve Meijer’s G function, can be calculated using
any software package having Meijer’s G function as a built-in
routine. It is also possible to approximately compute these in-
tegrals in a very efficient manner by approximating the MGF
of the Weibull RV by a rational function using Padé approxi-
mation [25–27].

4. NUMERICAL AND SIMULATION RESULTS

The results of the numerical evaluation of the outage proba-
bility expressions in this paper are presented in this section.
For all our results, we assume that β = 1 and SIRav = 15dB.
Results obtained via Monte Carlo simulations are also shown
for comparison purposes.

In Figure 1, ms = mI = 2 and the outage probability
obtained from our analysis is plotted for different number
of diversity branches versus the threshold γth. We note that
there is an excellent agreement between the numerical results
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Figure 1: The effect of the number of diversity branches of the SC
receiver on the outage probability for ms = mI = 2, K = 2, β = 1,
and SIRav = 15dB.
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Figure 2: The effect of changing the values of ms and mI on the
performance of the SC receiver with L = 2, K = 2, β = 1, and
SIRav = 15dB.

andMonte Carlo simulations thus proving the validity of our
expressions. It is also clear that the maximum SIR selection
criterion outperforms the maximum desired power selection
criterion. For L = 2, the improvement is about 2 dB and then
it increases to about 4 dB as L is increased to 4. Also, the no
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Figure 3: The effect of changing the number of interferers on the
performance of the SC receiver employing the maximum desired
signal power criterion withms = mI = 2, β = 1, and SIRav = 15dB.

diversity case is depicted for reference and the enhancement
compared to the no diversity case is evident from the figure.

In Figure 2, the effect of changing ms and mI is inves-
tigated and simulation results are again presented. We note
that increasing ms from 2 to 4 while keeping mI fixed at 2
results in an improvement in the performance. This is quite
expected since increasing the value of the fading parameter
is interpreted as a decrease in the degree of severity of the
desired signal fading channel. Also, we note that increasing
mI from 2 to 4 while keeping ms fixed at 4 leads to an im-
provement in the performance as well. A similar observation
has been reported earlier for the Nakagami fading channel
in [21] in which a physical explanation related to the up-
concavity of the Q-function has been also given. This expla-
nation still holds for the Weibull fading channel and will not
be repeated here.

Figure 3 depicts the outage probability evaluated for the
case ofms = mI = 2 with L = 2 and 4 and for different num-
ber of interferers. The SC receiver is assumed to employ the
maximum desired signal power criterion. We note an inter-
esting behavior; for threshold values less than � 16dB for
L = 2 and less than � 19 dB for L = 4, as the number
of interferers increases, the outage probability starts to de-
crease. However, as γth starts to increase beyond the afore-
mentioned values, the outage probability starts to increase
with the increase in the number of interferers. We again in-
vestigate the effect of the number of interferers in Figure 4,
but when the SC receiver is employing the maximum SIR
selection criterion. It is clear that, over the usual practical
range of interest for γth, the outage probability increases as
the number of interferers increases.
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performance of the SC receiver employing the maximum SIR crite-
rion withms = mI = 2, β = 1 and SIRav = 15dB.

5. CONCLUSIONS

In this paper, we derived analytical expressions for the outage
probability of the SC diversity scheme operating in a cellu-
lar network over a Weibull/Weibull fading environment. We
adopted a CF-based approach to reach our goal. Numerical
results were presented and the validity of our expressions has
been verified using results from Monte Carlo simulations.
We compared two different selection criteria that can be em-
ployed at the diversity receiver: the maximum desired sig-
nal power and the maximum output SIR. Based on our pre-
sented results, the maximum SIR criterion provides a signif-
icant gain in performance when compared to the maximum
desired signal power criterion, with the improvement more
pronounced as the number of diversity branches increases.
We also investigated the effect of changing the values of the
fading parameters of the desired as well as interfering sig-
nals, the number of interferers, and the number of diversity
branches on the performance.
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