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1  Introduction
Mobile devices are facing the limitations in terms of battery power and storage space. 
It is challenging for them to meet the demand of low latency, low power consumption 
and high reliability when executing new applications such as VR, image processing and 
unmanned driving [1]. Mobile Edge Computing (MEC) is a new computing paradigm 
that deploys computing and storage resources at the network edge (e.g., cloudlets, micro 
data centers, or fog nodes) closer to mobile devices, thereby providing users with high-
speed and low-latency services [2].

Computational offloading and mobility management are two key technologies in MEC. 
Computational offloading [3] aims to offload a part or all computing tasks of mobile 
devices to edge servers. Mobility management in MEC [4] refers to selecting appropriate 
edge nodes within the dense and complex network to provide services according to the 
users’ mobility trace.
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Many related researches have explored optimal offloading decisions [5–7] and mobile-
aware offloading [8, 9], aiming to minimize energy consumption while satisfying the delay 
constraint. However, these studies also have some limitations as follows: (1) The variation 
of contexts with environmental parameters is neglected, which will have a great impact on 
the offloading decision adaptation; (2) All tasks will be offloaded by default. However, some 
tasks may be less power-wasting to process on the local device; (3) In mobile-aware scheme, 
offloading decisions are usually made purely based on mobility. In fact, mobility is just one 
of the important factors influencing the offloading decisions.

Mobility is the basic feature of MEC [10], and the core characteristic is the change of loca-
tion or movement pattern. Wang et al. [10] showed that the user movement process will 
upload tasks and receive results through different small cell base stations (SBS). The num-
ber of users accessed by each SBSs is different, and the load involving communication and 
computing in the mobile edge network will change, that is, the movement of users results in 
a time-varying workload. Due to the mobility, The terminal devices in MEC are in different 
areas at different moments. The network condition and the available resources of the edge 
server (such as cloudlets) are dynamically updated with time [10, 11]. The values of contex-
tual attributes that affect the offloading decision fluctuate, have time-varying characteristics 
[12, 13]. The fixed context offloading strategy do not consider the mobility characteristics, 
which may lead to the invalidation for task offloading in MEC [12].

In this paper, we make the time-varying context-aware optimal edge offloading decision 
based on neutrosophic set (NS). Our main contributions are summarized as follows: 

(1)	 We establish a contextual offloading decision framework in a three-layer cloud-
edge hybrid MEC environment. Furthermore, we establish a single-value NS model 
with the ability to express fuzzy information for four key time-varying contextual 
attributes.

(2)	 We propose a time-varying context-aware cloudlet decision-making scheme based 
on neutrosophic sets, and use a series of NS unique operations including neutro-
sophic entropy, aggregation operator and NS score function to calculate the opti-
mal cloudlet

(3)	 Experiments show that compared with other methods, the proposed scheme per-
forms better in terms of the number of task failures, response time and energy con-
sumption.

The remainder of this paper is organized as follows. Section 2 reviews related work. Sec-
tion 3 provides an overview of the framework and a description of the problem. Section 4 
proposes the transformation from time-varying context sequence data to the contextual NS 
representation. Section 5 introduces the proposed cloudlet decision algorithm. Section 6 
presents the experimental details and results. Section 7 concludes the paper and highlights 
future directions of study.

2 � Related works
In order to make offloading decisions that maximize benefits, it is essential to consider 
contextual information. Studies have been conducted to make service selection or off-
loading decision by considering different contextual factors, such as user location [11], 
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wireless medium [14], application type [15], and network bandwidth [16], etc. These 
schemes adopted such as supervised learning [11] or a multi-criteria decision-making 
[14] to improve cloud computing service performance or optimize the energy consump-
tion of mobile devices. Given a specific context, these schemes’ decisions may be inaccu-
rate and inefficient. In response to this problem, Junior et al. [17] considered six factors 
including network throughput, application data size, CPU utilization of mobile phone, 
etc., and used machine learning classification algorithms JRIP and J48 to achieve high-
precision context-aware offloading.

Chen et  al. [18] conducted an evaluation under the T-Mobile LTE network. It was 
shown that when watching streaming video in a mobile vehicle with weak wireless sig-
nal, maintaining a high bitrate is not helpful for improving the user experience. Mean-
while, reducing the resolution at this time can greatly save energy of the device. As you 
can see, mobility does affect the offloading context.

To this end, some studies (such as [2] and [8]) model the distribution of mobile users 
in the Cloudlet as a Poisson point process, which then could be solved using a Markov 
Decision Process (MDP). The difference is that Wang et al. [2] considered the sojourn 
time of the mobile device in the current service area, while Zhang et al. [8] focused on 
the impact of user movement on the connectivity between the user and the cloudlet.

Solutions using MDP assume that the user’s movement patterns are known in advance 
which is difficult to obtain in fact. Zhang et al. [4] proposed a deep Q-network (DQN)-
based task migration technique for MEC systems, which learns optimal task offloading 
and migration strategies from previous experience, without having to obtain the user’s 
moving pattern information in advance. Mukherjee et al. [19] proposed a mobile-aware 
task delegation model and a code offloading model based on virtual machine migra-
tion. Yu et al. [9] proposed a dynamic mobility-aware partial offloading scheme based 
on short-term movement prediction, which optimize the offloading ratio and offloading 
path during the movement of users.

It can be seen that the existing mobile-aware edge offloading research focused on the 
analysis and processing of mobile patterns. In fact, the user’s movement is accompanied 
by dynamic hidden features that change over time. These hidden features lead to uncer-
tainty about the network enabled by MEC [20]. To ensure the effectiveness of offloading 
in MEC, it is necessary to consider the time-varying characteristics in addition to the 
mobility characteristics [12].

The current research on the time-varying characteristics in MEC mainly consider two 
types, namely, time-varying network and time-varying load variation. Both [12] and [21] 
study the time-varying characteristics of the channel in-vehicle edge computing. A time-
varying channel will result in time-varying spectral efficiency (SE). If the time-varying 
delay is not considered, the offloading strategy cannot guarantee the task delay require-
ment. In [12], the time-varying SE is calculated using the average SE across the region 
during the task transit time. [21] also adopted the mean value scheme for time-varying 
features. The MobiEdge system [13] considered the time-varying characteristics of the 
service request workload in a frame for edge service placement and transforms the max-
imization problem under constraints into a linear programming problem.

It can be seen that the existing work has limited consideration of the changes context 
of mobile edge environment over time and does not simultaneously integrate mobility 
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and other contexts to make comprehensive offloading decisions. The above reasons 
prompt us to propose a time-varying context-aware edge offloading strategy.

3 � Three‑tier offloading decision framework and problems
3.1 � System framework

In this paper, we consider a three-tier cloud-edge hybrid computation offloading envi-
ronment, consisting of a central cloud, some cloudlets and some mobile devices. Com-
putational tasks can be executed at these three locations. Among them, the central cloud 
can provide stable and powerful computing ability and massive storage, but the commu-
nication latency is high. Within the user’s mobile range, there are also p cloudlets, which 
deploy servers with computing and network resources. The cloudlets have computing 
ability superior to mobile devices, and can provide low-latency services compared to the 
central cloud. At this time, within the delay threshold Ttimer , the optimal cloudlet may 
be selected from the nearby p cloudlets to perform the task according to the context 
attributes.

The time-varying context-aware edge offloading framework proposed in this paper 
is shown in Fig.  1. The framework has three levels: (1) Obtaining historical contex-
tual time-varying data. These data, including CPU utilization, load, and network 
latency are obtained through related APIs. The mobile attribute is characterized by 
the expected residence time within the cloudlet. (2) A novel presentation model of 
time-varying context. The time-varying data of contextual attributes are dynamic and 
imprecise. We use a neutrosophic set (NS) model to describe such uncertain fuzzy 

Fig. 1  The framework of time-varying context-aware offloading based on neutrosophic set. We consider 
a three-tier cloud-edge hybrid computation offloading environment (which is depicted in the right 
part), consisting of a central cloud, some cloudlets and some mobile devices. Computational tasks can 
be executed at these three locations. The framework, from bottom to top, has three levels: (1) Obtaining 
historical contextual time-varying data. These contextual data includes four types, include CPU utilization, 
load, network latency and the expected residence time within the cloudlet. (2) A novel presentation model 
of time-varying context. The time-varying data of contextual attributes are dynamic and imprecise. We use 
a neutrosophic set (NS) model to describe such uncertain fuzzy information and generate a single-valued 
NS for each contextual attribute of cloudlets. (3) The best cloudlet selection through a series operations of 
NS. That is, first, we calculate the weight of each context attribute. we calculate the weight of each context 
attribute. Then, we use the single valued NS weighted average aggregation operator to aggregate the SVNS 
of cloudlets into the single-valued neutrosophic number of cloudlets. Finally, we select the best cloudlet 
using the NS score function
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information, and generate a single-valued NS for each contextual attribute of cloud-
lets. (3) The best cloudlet selection through a series operations of NS. That is, first, 
we calculate the weight of each context attribute. Then, we use the single-valued NS 
weighted average aggregation operator to aggregate the SVNS of cloudlets into the 
single-valued neutrosophic number of cloudlets. Finally, we select the best cloudlet 
using a combination of the NS score function and the cloudlet usage probability pre-
dicted by the mobile periodicity.

In the three-layer cloud-edge environment, there are n tasks to be executed. The 
execution cost consists of two parts: the task response time and the energy consump-
tion. The execution costs of computing tasks in the local mobile device, the cloudlet 
and the central cloud are denoted as Cmob , Cclt , Ccld , respectively.

Accordingly, if Cmob ≤ Cclt , it is less costly to process the task locally on the mobile 
device itself, and otherwise it is more appropriate to offload the task to the nearest 
cloudlet. When no suitable cloudlet can be obtained within Ttimer , the task will be trans-
ferred to the central cloud and be served. The tasks in the system are offloaded to three 
locations, and the total cost of completing this set of tasks is formulated as follows:

where x, y and z denote the number of tasks executed in local mobile devices, cloudlets 
and the central cloud, respectively. Here, we have x + y+ z = n.

3.2 � Three layers cloud‑edge hybrid offloading cost

The execution cost consists task response time T and energy consumption E as follows:

where site ∈ {mob, clt, cld} , α and β are the weighting factors for response time and 
energy consumption, determined according to user preferences. The calculations of T 
and E for task execution at the three locations are detailed below, respectively.

(1) Local execution
If the task is executed on a mobile device, the response time and energy consump-

tion of the task are calculated as follows:

where I refers to the task size which is described by the number of instructions, Smob is 
the number of instructions executed per unit time of the mobile device, and Pmob is the 
power consumption per unit time while executing the task.

(2) Task offloading to the cloudlet
If a task request is responded by the nearest cloudlet, the response time includes 

propagation time, communication time, queuing time and processing time. The cor-
responding calculation is shown as follows:

(1)Csum =

x

i=0

Cmobi +

y

j=0

Ccltj +

z

k=0

Ccldk

(2)C site = α · T site + β · E site

(3)Tmob = I/Smob

(4)Emob = Pmob · (I/Smob)
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where Dclt is the distance between the device and the cloudlet, Sp is the propagation 
speed. Du , Dd , Bu , Bd are the amount of uplink data, the amount of downlink data, 
uplink data transmission rate, downlink data transmission rate, respectively, Qclt denotes 
the queue waiting time, Sclt denotes the number of instructions executed by cloudlet per 
unit time.

The total energy consumption of the task execution on the cloudlet includes the 
energy consumption of the mobile device when sending and receiving data and wait-
ing for the results. It is calculated as follows:

where Pmoi is the power consumed per unit time when the mobile device is waiting for 
a result, Ps is the power consumed by mobile device for sending data per unit time, Pr is 
the power consumed by mobile device for receiving data per unit time.

(3) Task offloading to the central cloud
The central cloud has powerful computing ability and storage capabilities, and thus 

tasks can be executed without queuing. The response time and energy consumption 
are calculated below.

where Dcld represents the distance between the nearest cloudlet and the central cloud, 
Scld represents the number of instructions executed by the central cloud per unit time.

3.3 � Time‑varying context of offloading

In this paper, contexts are defined as the relevant attributes that affect the task off-
loading process and results. Four time-varying contextual factors are considered for 
offloading decision, namely, cloudlet load, CPU utilization, network conditions and 
mobile residence time.

The former three factors are common contextual factors which are easy to measure, 
collect and test [22]. (1) The load refers to the average number of tasks that are using 
CPU or waiting CPU over a period of time. The higher the load, the higher the queu-
ing delay and service loss probability. (2) CPU utilization is the percentage of CPU 
occupied by the program in real time during its operation. The lower the current CPU 
utilization, the more computationally intensive tasks can be executed. (3) Network 
conditions determine the quality of communication between the mobile device and 
the server throughout the offloading process.

(5)
Tclt =

(
Dclt/Sp

)
+ [(Du/Bu)+ (Dd/Bd)]

+ Qclt + (I/Sclt)

(6)
Eclt =Pmoi ·

[(
Dclt/Sp

)
+ (I/Sclt)+ Qclt

]

+ Ps · (Du/Bu)+ Pr · (Dd/Bd)

(7)
Tcld =(Dclt + Dcld)/Sp + [(Du/Bu)

+(Dd/Bd)]+ [I/Scld]+ T timer

(8)
Ecld =Pmoi ·

[
(I/Scld)+ (Dclt + Dcld)/Sp + T timer

]

+ Ps · (Du/Bu)+ Pr · (Dd/Bd)
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(4)The mobile residence time. User’s movement may result in disconnection from the 
old cloudlet and reconnection to the new cloudlet, bringing additional task migration 
overhead. Different from the former three contexts, mobility is an abstract concept. 
In this paper, the mobile residence time of the device is used to represent the user’s 
expected residence time within the cloudlet service range. The mobile residence time is 
one of the most important factors affecting edge server selection and ensuring service 
continuity.

The above four contexts are dynamically updated over time, all have time-varying 
characteristics. Thus, making the offload decision cannot only consider the state of the 
context at the current moment but should analyze it from a recent period of time.

3.4 � Mobile residence time

The longer a user stays within the service scope of a cloudlet, the more likely the task 
will be completed at the current cloudlet without additional overhead resulted from task 
migration [23]. The variation of mobile residence time is shown in Fig. 2. Suppose the 
user moving along the direction α0 at the moment t0 , changes the direction of movement 
to α1 at the moment t1 , and the user moves along α2 again by t2.

Taking cloudlet2 as an example, we estimate the mobile residence time of users within 
cloudlet2’s service range. The cloudlet position is (a, b), R denotes the service scope of the 
cloudlet. The user current position is (x, y). The user’s direction of movement α and the 
user moving speed V can be obtained via GPS. D is the straight line distance between the 

Fig. 2  Illustrate the measure of mobile residence time. Suppose the user moving along the direction α0 at 
the moment t0 , changes the direction of movement to α1 at the moment t1 , and the user moves along α2 
again by t2 . Taking cloudlet2 as an example, we estimate the mobile residence time of users within cloudlet2’s 
service range. The cloudlet position is (a, b), R denotes the service scope of the cloudlet. The user current 
position is (x, y). The user’s direction of movement α and the user moving speed V can be obtained via GPS. D 
is the straight line distance between the user’s current position and the cloudlet
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user’s current position and the cloudlet. Then the residence time of the user in cloudlet2 at 
moment t0 can be calculated by Eq. (9).

where S is the distance of the user needs to travel to leave the coverage of the cloudlet 
along the moving direction. θ = arccos

α·β
|α|×|β|

 , β is the direction vector from the user’s 
current position to the cloudlet. We have β = (a− x, b− y) . Instead of calculate the res-
idence time of cloudlet through a single straight-line distance and velocity, we describe 
the time-varying characteristics of the estimated residence time, record the estimated 
residence time within q moments. There are already some software that obtains the 
relevant interfaces to achieve accurate step counting, speed acquisition, etc. Examples 
include Google’s Speedometer, a GPS Speed Tracker. By calculating the expected resi-
dence time of mobile users at q moments within p cloudlets respectively, we can obtain 
the time-varying data sequences, denoted as Mj

i , i ∈ {1, 2, ..., p}, j ∈ {1, 2, ..., q}.

4 � Methods
4.1 � Time‑varying context model based on single‑valued NS

4.1.1 � Time‑varying context data sequence of a cloudlet

Suppose there are p candidate cloudlets. The time-varying sequences of cloudlet load L, 
CPU utilization C and network conditions D in q consecutive moments are denoted as 
L
j
i , C

j
i , D

j
i , i ∈ {1, 2, ..., p} , j ∈ {1, 2, ..., q} . The load and CPU utilization can be viewed by 

top and vmstat commands respectively in Linux environment. The network conditions 
are measured by network latency. The time-varying mobility property is characterized 
by the expected user residence time within the cloudlet. By calculating the expected resi-
dence time of mobile users at q moments within p cloudlets respectively, we can obtain 
the time-varying data sequences, denoted as Mj

i , i ∈ {1, 2, ..., p}, j ∈ {1, 2, ..., q} . The 
time-varying contextual data of cloudleti are collectively denoted as a quaternion vector 
CON (i) = (Li,Ci,Di,Mi).

After normalizing the contextual original data, the four time-varying contextual 
data sequences of p candidate cloudlets at q moments can be expressed as matrix 
CON (cloudlet

j
i )p×4, i ∈ {1, 2, ..., p} , j ∈ {1, 2, ..., q} , which is formulated as follows:

The i-th row of the matrix CON (cloudlet
j
i ) , CON(i) corresponds to the context data 

sequence of the cloudleti , expressed as follows:

(9)M =
S

v
=

D cos θ +
√
R2 − D2 sin2 θ

v

(10)

CON
�
cloudlet

j
i

�

p×4
=

�
L(p×q),C(p×q),D(p×q),M(p×q)

�
=





�
L11,L

2
1, . . . ,L

q
1

� �
C1
1 ,C

2
1 , . . . ,C

q
1

� �
D1
1,D

2
1, . . . ,D

q
1

��
M1

1 ,M
2
1 , . . . ,M

q
1

�
�
L12,L

2
2, . . . ,L

q
2

� �
C1
2 ,C

2
2 , . . . ,C

q
2

� �
D1
2,D

2
2, . . . ,D

q
2

��
M1

2 ,M
2
2 , . . . ,M

q
2

�

...
...

...
...�

L1p,L
2
p, . . . ,L

q
p

��
C1
p ,C

2
p , . . . ,C

q
p

��
D1
p,D

2
p, . . . ,D

q
p

��
M1

p ,M
2
p , . . . ,M

q
p

�





(11)
CON (i) = (L(i),C(i),D(i),M(i))

=
(
(Li)(1∗q), (Ci)(1∗q), (Di)(1∗q), (Mi)(1∗q)

)
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4.1.2 � The SVNS representation of the time‑varying context

Most of the existing work on analyzing the time-varying features of mobile edges adopt 
the average value based scheme, which is difficult to accurately characterize the inconsist-
ent and uncertain fuzzy information. In this paper, we consider the characterization tool 
of fuzzy information, single-valued neutrosophic set (SVNS). SVNS [24] is a branch of 
neutrosophic set (NS) theory [25], which expands the traditional fuzzy set, adopts three 
measures of truth-membership, indeterminacy-membership and falsity-membership to 
characterize fuzzy decision-making information. It has the ability to delicately and accu-
rately describe the fuzzy nature of objective things. At the same time, the neutrosophic set 
has independent unique operations, which have been widely used in multi-attribute deci-
sion making [26], artificial intelligence [27] and service evaluation [28].

The value of the membership function of the SVNS is a real number. Given a domain 
X, a SVNS A on X includes truth-membership function TA(x) , indeterminacy-membership 
function IA(x) and falsity-membership function FA(x) , denoted as follow:

where TA(x), IA(x), FA(x) ∈ [0, 1] , and 0 ≤ TA(x)+ IA(x)+ FA(x) ≤ 3.
In order to use SVNS to characterize the time-varying context, it is necessary to estab-

lish three membership functions for each time-varying context factor of cloudleti , that is, 
to obtain the three membership values for each context factor of cloudleti . Converting the 
contextual data sequence expressed in Eq. (11) to a SVNS, it can be expressed as follows:

4.1.3 � The context SVNS generation using backward cloud model

In order to establish the three membership functions of the time-varying context, cloud 
model [29](CM) is used to complete the transformation expressed in Eq. (5). The cloud 
model is a cognitive model that implements the duplex transformation of qualitative 
concepts and quantitative data. The contextual data sequence have been acquired in sec-
tion 4.1, so the current problem is one that goes from quantitative (data sequence) to quali-
tative (degree of membership).

The cloud model has three numerical features: expectation Êx , entropy Ên , and super-
entropy Ĥe . Êx is the expectation of the spatial distribution of cloud drops in the theoreti-
cal domain, which represents the basic certainty of the qualitative concept; Ên represents 
the measure of uncertainty of the qualitative concept, which reflects the range of values that 
can be accepted by this concept in the theoretical domain. Ĥe is the entropy of the entropy 
Ên , which is the uncertainty of the entropy and expresses the deviation of the cloud model. 
Therefore, Êx can be taken as the truth-membership TA of SVNS, Ên as the indeterminacy-
membership IA , and Ĥe as the falsity-membership FA , that is,

A = {�X ,TA(x), IA(x), FA(x)� | x ∈ X}

(12)∀con ∈ {L,C ,D,M},CON (i) ⇒ {Tcon
i (x), Iconi (x), Fcon

i (x)}

(13)TA(x) =Êx(x)

(14)IA(x) =Ên(x)
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In this paper, hybrid cloud and cloud models both refer to the word ‘cloud’. To distin-
guish them, hybrid cloud is used to refer to nodes or clusters in distributed computing. 
It is a computational paradigm. However, cloud, cloud model, cloud droplet and other 
related words are all terms in cloud theory, which involves uncertain concepts in the 
artificial intelligence field.

In cloud model, a cloud consists of cloud drops. A cloud drop is a realization of a qualita-
tive concept, and a certain number of cloud drops can express a cloud. Here, the value of 
one-dimensional time-varying context of cloudleti at moment j can be regarded as a cloud 
drop. Its sequence of values describing the dimensional context at q moments can character-
ize the cloud model which is denoted as CMcon(i) . That is, CMcon(i) = (con1i , con

2
i , ..., con

q
i ) . 

For cloudleti , use the membership calculation scheme shown in Eq. (13) - Eq. (15). That is, 
the backward cloud generator is selected to establish a context cloud model for each dimen-
sion as follows:

where con ∈ {L,C ,D,M} , conji denotes the time-varying context sequence of a certain 
context of cloudleti , i ∈ {1, 2, ..., p} , j ∈ {1, 2, ..., q}.

A element in the SVNS A is called single-valued neutrosophic number (SVNN), 
which is expressed as {TA, IA, FA} . For the cloudleti , the original time-varying context data 
sequences of each dimension generates three numeric features through the backward cloud 
generator, that is, three SVNNs are generated.

So far, the transformation from the time-varying context data sequence of the candidate 
cloudlets to the context SVNN has been completed, which can be expressed as follow:

Therefore, the time-varying contextual numerical sequence matrix CON (cloudlet
j
i )p×4 

of the p candidate cloudlets is transformed into the following SVNS context matrix as 
follows:

(15)FA(x) =Ĥe(x)

(13*)Tcon
i (x) =Êxconi = X̄ =

1

q

q∑

j=1

con
j
i

(14*)Iconi (x) =Ênconi =

√
π

2
×

1

q

q∑

j=1

∣∣∣conji − Êx
∣∣∣

(15*)Fcon
i (x) =Ĥeconi =

√
S2 − Ên2, S2 =

1

q − 1

q∑

k=1

(
con

j
i − X̄

)2

(12*)
CON (i) = (con1i , con

2
i , ..., con

q
i ) = CMcon

i ⇒

{Tcon
i (x), Iconi (x), Fcon

i (x)} = {Êxconi , Ênconi , Ĥeconi }
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where i ∈ {1, 2, ..., p}, con ∈ {L,C ,D,M} . Each row vector of the matrix SVNS(i) repre-
sents the four-dimensional context SVNNs of cloudleti , and the four column vectors 
respectively correspond to the SVNS of all candidate cloudlets for the four-dimensional 
context.

The method of transformation from the original context time-varying sequence to the 
context SVNS proposed in this paper is extensible. Under specific scenario, other customi-
zation decision-making factors can also be extended to take into account.

4.2 � Time‑varying context‑aware cloudlet decision

After obtaining the SVNN of each time-varying contextual attribute of the candidate 
cloudlet, the optimal cloudlet offloading decision can be made. In this paper, the offload-
ing problem is transformed into a multi-criteria decision-making (MCDM) problem. 
Here, the MCDM based on NS are represented by SVNN, which can characterize the 
ambiguity of decision information. For the SVNS context matrix SVNS(cloudletconi )p×4 , 
some unique appropriate operators under the NS computing system are selected to 
determine the optimal cloudlet.

4.2.1 � Candidate cloudlet assessment by neutrosophic operation

(1) the weight of contextual attribute by SVNS entropy
In MCDM problems, different contextual attributes contribute to the decision at dif-

ferent degrees, and thus should be assigned different weight values. In this paper, the 
weights of each contextual attribute in the SVNS environment are derived using the 
NS entropy [30]. The entropy of SVNS is used to describe the degree of uncertainly of 
SVNS, which is defined as follow:

where Ac is the complementary set [30] of A and it satisfies that 
TAc = FA, IAc = 1− IA, FAc = TA.

In this paper, the weight corresponding to each context attribute is completely 
unknown, which is consistent with the characteristics of entropy. Therefore, the corre-
sponding weights for each attribute are calculated as follows:

where con ∈ {L,C ,D,M} denotes four contextual attributes, E(Acon) denotes the entropy 
of the SVNS of the four context properties, that is, the entropy of SVNS represented by 
the four column vectors of SVNS(cloudletconi )p×4.

SVNS
�
cloudletconi

�
p×4

=
�
Tcon
i , Iconi , Fcon

i

�
p×4

=




�
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L
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L
1

��
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C
1

��
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��
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�
�
TL
2 , I

L
2 , F

L
2

��
TC
2 , IC2 , F

C
2

��
TD
2 , ID2 , F

D
2

��
TM
2 , IM2 , FM

2

�

...
...
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��
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



E(A) = 1−
1

n

n∑

i=1

{(TA(xi)+ FA(xi)) · |IA(xi)− IAc (xi)|}

(16)ωcon =
1− E(Acon)∑4

j=1 (1− E(Acon))
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Next, the contextual SVNS aggregated into the SVNN of the candidate cloudlet based 
on the SVNS weighted average aggregation operator SVNSWAω [26]. The operation will 
aggregate each row in the matrix SVNS(cloudletconi )p×4 to derive the SVNN of candidate 
cloudleti as follows:

This operation aggregates each row in the matrix SVNS(cloudletconi )p×4 , 
SVNS(i) =

{{
TL
i , I

L
i , F

L
i

}{
TC
i , ICi , F

C
i

}{
TD
i , IDi , F

D
i

}{
TM
i , IMi , FM

i

}}
 , to obtain the 

SVNN of the candidate cloudleti , that is, SVNNi = {Ti, Ii, Fi}.
(2) cloudlet score calculation by NS score function
After obtaining the SVNN of cloudleti , the score of each candidate cloudlet is calcu-

lated using the NS score function [25] which is an important metric in SVNN ranking. 
The score of cloudleti is calculated as follow:

where Ti , Ii and Fi are the truth-membership value, indeterminacy-membership value 
and falsity-membership value of cloudleti , respectively. The cloudlet with the highest 
score is the optimal cloudlet. Now, we have the preliminaries score of cloudleti as the 
target cloudlet with the time-varying context feature.

4.2.2 � Composite score by movement periodicity

Studies on human mobility have shown that users often move back and forth to sev-
eral places, showing periodicity and predictability in their movements [23]. Therefore, 
we propose a prediction algorithm for cloudlet usage based on tail sequence matching 
and calculate the predicted cloudlet usage probability. Finally, make the optimal cloudlet 
decision with the help of this probability and mentioned NS score function.

Definition 1  Tail matching subsequence (TMS). A mobile user’s cloudlet history usage 
sequence are denoted as S = (S1, S2, S3, ..., Sn) . Its tail subsequences with length l are 
denoted as SE(l) = (Sn−l+1, ..., Sn−1, Sn) . If there is a subsequence of S with length of l, 
S
′
= (S

′

m, S
′

m+1, S
′

m+2, ..., S
′

m+l) , satisfying S′

m+i = Sn−l+i, i ∈ (0, l) , then S′ is a TMS of 
the historical usage sequence S.

In the historical use sequence S, there may be more than one TMS corresponding to a 
tail subsequence SE of a particular length l. If these TMSs exist in S, the next element of 
TMS will most likely be the next element of SE as the prediction target cloudlet.

Definition 2  Tail-matched prediction cloudlet (TMC). A mobile user’s cloudlet his-
tory usage sequence is S = (S1, S2, ..., Sn) , S

′
= (S

′

m, S
′

m+1, ..., S
′

m+l) is a TMS of S, and 
then the cloudlet indicated by the next access location of S′ in S, i.e., S′

m+l+1
 is a TMC for 

that user.

(17)

SVNSWAω

(
SVNNL

i , SVNN
C
i , SVNND

i , SVNNM
i

)

=

〈
1−

∏

con

(
1− Tcon

i

)ωcon
,
∏

con

(
Iconi

)ωcon
,
∏

con

(
Fcon
i

)ωcon

〉

(18)score(cloudleti) = (Ti + 1− Ii + 1− Fi)/3
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In the example shown in Fig.  3, a historical usage sequence of cloudlets by mobile 
users is cloudlet A,D,B, F ,C , and so on. We can see ADBF  is a TMS of length 4, and BF  
is a TMS of length 2. The corresponding TMC C and E can also be obtained. According 
to TMS and TMC, the prediction algorithm of cloudlet usage is detailed in algorithm 1.

Algorithm 1  Prediction algorithm for cloudlet usage based on tail sequence matching (PCTSM)

Obviously, the length of SE is not fixed, and there may be more than one TMS. There-
fore, for multiple TMSs, they are given corresponding weights. There will be duplicate 
elements in TMCs . We remove these duplicate elements, and then record the duplicate 
times of elements in TMCs as num1, num2, ..., numn and the corresponding TMS length 
as len1, len2, ..., lenn . Obviously, the larger num and len are, the higher the probability of 
using the cloudlet next. The using probability is calculated as:

where ω1 and ω2 denote the weight of duplicate times of TMC and the length of TMS, 
respectively, j ∈ {1, 2, ..., n} , and n is the number of non-repeating cloudlet in TMCs.

We filter out the cloudlets that are not in the prediction range to reduce the computa-
tional complexity. For the cloudlets in the prediction range, the score of cloudleti will be 
updated using the probability probi , and the composite score of cloudleti will be calcu-
lated as:

(19)probi = ω1

numi∑n
j=1 numj

+ ω2

leni∑n
j=1 lenj

Fig. 3  Illustrate a mobile user’s historical usage sequence of cloudlets. ADBF is a tail matching subsequence 
(TMS) of length 4, and BF is a TMS of length 2. The tail-matched prediction cloudlet is C and E correspondingly
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where Cscorei is the composite score of cloudleti after considering movement periodicity. 
The best cloudlet is the one with the highest composite score.

4.2.3 � Time‑varying context‑aware cloudlet decision algorithm

The time-varying context-aware cloudlet decision algorithm based on neutrosophic 
set(TConNS) is shown in Algorithm 2.

Algorithm 2  Time-varying context-aware cloudlet decision algorithm based on neutrosophic set (TConNS)

In TConNS, step 3 to step 8 convert the context raw data sequence into a context 
SVNS matrix with a time complexity of 4 ·O(p) . Step 9 to step 16 use the SVNS matrix 
to make decisions, and the time complexity is 4 ·O(p) . The time complexity of the entire 
algorithm is C ·O(p) , where C represents the |con|, that is the number of context dimen-
sions considered.

5 � The experiment, results and discussion
In this section, we conduct several experiments to evaluate the TConNS with better per-
formance. Section  5.1 describes the experimental environment and performance met-
rics. Section 5.2 compares the TConNS with other three related offloading schemes and 
analyzed.

5.1 � Experimental settings

(1) experimental environment
In this paper, we use Advantech EIS-D210 [31] (3846MIPS, 1.5GHz, 4GB RAM) as the 

parameter of cloudlet and use Dell PowerEdge (31790MIPS, 3.0GHz, 768GB RAM) as 

(20)Cscorei = scorei ∗ probi
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the parameter of cloud server. The service scope of the cloudlet is set as 50 m, the band-
width between the user and the cloudlet is set to 100Mbps, and the bandwidth between 
the user and the cloud server is set as 1Gbps [32]. The task size is allocated according to 
uniform distribution with an average value of 4600 M instructions and the data transfer 
size of each task is also allocated in the same way with an average value of 750 kilobytes 
[33].

The experiment was run on Windows 1020H2, using the python language, version 3.9. 
Coordinate distances are calculated using python’s geodesic package, and numpy and 
pandas are used for matrix manipulation and data analysis.

(2) datasets
The experiments in this paper use the EUA dataset [34] and the Alibaba cluster dataset 

[35]. The EUA dataset collects geographic locations of edge servers and mobile users in 
the Melbourne, Australia area, and can be used to study mobility in edge environments. 
The Alibaba cluster dataset records data related to the actual production of 4000 servers 
over an 8-day period. We extract two kinds of data on CPU utilization and load of the 
servers from the dataset. Network conditions are measured by network latency.

(3) Comparing algorithms and evaluation metrics
To verify the effectiveness of TConNS, we compare TConNS with three other context-

aware offloading schemes.
(a) appAware [15]: This scheme offloads tasks to different cloudlets depending on the 

requested application type, and tasks will be offloaded to the cloud computing center 
when no suitable cloudlets is available;

(b) mCloud [14]: In this scheme, different offloading locations are selected by the cur-
rently available wireless media of the mobile device. TOPSIS multi-attribute decision 
making is performed when multiple available wireless media exist;

(c) VMM [19]: A mobility-aware task offloading model is proposed. As the user moves, 
the task is switched between different cloudlets until the task execution is completed.

(4) Baselines
Four baseline methods were used to further verify the effects of mobility, network con-

ditions, load and CPU utilization on cloudlet selection. These four baselines are simpli-
fied versions of TConNS. They are: TCon-wL (without load) that does not consider the 
load of cloudlet, TCon-wC (without cpuUtil) that does not consider the CPU utilization 
of cloudlet, TCon-wD (without delay) that does not consider network conditions and 
TCon-wM (without mobility) that does not consider users’ mobility.

We consider three metrics: (a) the average number of task failures; (b)the response 
time of task completion and (c) energy consumption. A Task whose response time 
exceeds the delay threshold is defined as a failed task.

5.2 � Experimental results and analysis

5.2.1 � Case study

Assumed that there are 10 candidate cloudlets near the user. Considering the periodicity 
of the user’s movement, the TMC predicted by algorithm 1 are cloudlets B, D, G and I. 
The matching subsequence length and the matching times are returned. Assuming that 
the weights of matching sequence length and times of matches are equal, the predicted 
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cloudlet usage probability is calculated using Eq. (19). All the above results are shown in 
Table 1.

For cloudlet B, D, G and I, within the prediction range, the original data of the four con-
text attributes within 20 moments are taken to characterize the time-varying properties. 
After normalizing the data, the time-varying context data are transformed into SVNS of 
the cloudlets’ contexts using Eq. (13∗ ) - Eq. (15∗ ), i.e., the matrix SVNS(cloudletconi )p×4 , 
as shown in Table 2.

Next, the weights of each context attribute are calculated using Eq. (16) to obtain 
ωcon = (0.24, 0.27, 0.22, 0.27) , where con ∈ {L,C ,D,M} . We use Eq. (17) to aggregate the 
SVNS of cloudlets on the time-varying contexts into the SVNN of each candidate cloud-
let, and finally, use Eq. (18) and Eq. (20) to calculate the score and the composite score of 
each candidate cloudlets, as shown in Table 3.

The cloudlet I, which has the highest score, exhibits high truth-membership, low inde-
terminacy-membership and falsity-membership for each context parameter. Its score is 
the highest. However, it is not the final choice because the user has the highest probabil-
ity to access cloudlet D considering the periodicity of user movement, and its composite 
score is the highest. Therefore, here the cloudlet D is the optimal cloudlet.

5.2.2 � Comparative analysis

(1) Proportion of tasks offloaded to different locations
Figure  4 shows the percentage of 100 tasks offloaded to different locations by using 

three schemes. When the cloudlet does not meet the requirements of the task to be 
processed, appAware and mCloud choose to process the task on the local device or the 
center cloud instead of looking for another cloudlet. In appAware, the proportion of off-
loading to cloud is larger due to only the availability of the application to process a cer-
tain type of task on the cloudlet. In the experiment of mCloud, only the wireless medium 
is considered as a contextual condition, and only the availability of the wireless medium 

Table 1  TMC related information

TMC Matching length Matching times Usage 
probability

cloudlet B 4 1 0.20

cloudlet D 4 3 0.32

cloudlet G 2 3 0.25

cloudlet I 5 1 0.23

Table 2  SVNS of cloudlets on time-varying contexts

Candidate cloudlet L C D M

Cloudlet B 0.47, 0.25, 0.02 0.48, 0.30, 0.10 0.42, 0.37, 0.17 0.44, 0.36, 0.14

Cloudlet D 0.49, 0.28, 0.02 0.51, 0.20, 0.12 0.52, 0.32, 0.08 0.60, 0.24, 0.06

Cloudlet G 0.42, 0.22, 0.06 0.46, 0.30, 0.04 0.50, 0.31, 0.08 0.58, 0.28, 0.05

Cloudlet I 0.51, 0.28, 0.02 0.50, 0.20, 0.08 0.54, 0.27, 0.05 0.62, 0.22, 0.10
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is used to decide where to process the task. When there is no available WIFI media, 
there are a large number of tasks processed locally on the device.

(2) Number of failed tasks
The number of task failures is measured when the number of tasks is 20, 40, 60, 80, and 

100, respectively. The number of task failures of TConNS and the comparison experi-
ments are shown in Fig. 5.

TConNS captures the user’s movement tendency by predicting the user’s residence 
time in the cloudlet scope. If the expected residence time in a cloudlet is small, this 
cloudlet is assigned a small truth-membership and a small comprehensive score. Thus, 
this cloudlet cannot become the best cloudlet, avoiding task migration and reducing the 
number of task failures. In VMM, as users move, tasks switch between different cloud-
lets leads to a considerable increase in the number of failed tasks. In addition, TConNS 
considers multiple contextual attributes and selects the best cloudlet to provide high-
quality service for tasks and reduce the number of task failures, which is more compre-
hensive than appAware and mCloud that only consider a single context. Furthermore, 
the data sequence of the most recent period is chosen by TConNS to characterize the 
time-varying properties of the attributes. The appropriate context in the most recent 
period is also appropriate in the most recent future, which has a significant impact on 
best cloudlet decision. Selecting the best cloudlet can reduce the number of failed tasks.

(3) Response time and energy consumption
The comparisons of the response time and energy consumption between TConNS and 

the other three algorithms when processing different number of tasks are shown in Fig. 6 
and Fig. 7. The average response time of TConNS is about 49% lower and the average 
energy consumption is about 46% lower compared to the other schemes.

The above comparison results show the comprehensive effect of TConNS is better. The 
large proportion of tasks offloaded to the cloudlet (see Fig. 4) and the small number of 

Table 3  Candidate cloudlets’ SVNN and its score

Candidate cloudlet SVNN Score Cscore

Cloudlet B 0.46, 0.32, 0.08 2.06 0.41

Cloudlet D 0.53, 0.25, 0.06 2.22 0.71

Cloudlet G 0.50, 0.28, 0.05 2.17 0.54

Cloudlet I 0.55, 0.24, 0.06 2.25 0.52

Fig. 4  Proportion comparison of offloading to different locations. The figure shows the percentage of 100 
tasks offloaded to three different locations (mobile device itself, cloudlets and the central cloud) by using 
three schemes
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failed tasks (see Fig. 5) analyzed above both contribute to the lower response time and 
energy consumption of TConNS. In addition, TConNS integrates the four time-varying 
contexts of cloudlet load, CPU utilization, network conditions, and user mobility for 
optimal cloudlet selection. The response time and energy consumption of the optimal 
cloudlet the task are lower, while the other comparison methods do not consider the 
selection of the optimal cloudlet.

(4) Baselines Analysis
Figure 8 depicts comparison results of number of failed tasks among TConNS and 

baselines. Figure  9 and 10 depicts comparison results of response time and energy 
consumption among TConNS and baselines with different number tasks, respectively. 
It can be seen that the fusion of these four context properties is crucial to the choice 
of cloudlet. In our TConNS, the cloudlet is chosen with the impact of multiple con-
textual attribute information taken into account, rather than modeling from a single 

Fig. 5  Comparison of failed tasks. The figure shows the number of failure tasks of TConNS and the 
comparison schemes. The number of task failures is measured when the number of tasks is 20, 40, 60, 80, and 
100, respectively. It validates that TconNS can reduce the number of failed tasks

Fig. 6  Comparison of response time. The figure shows the comparison of the response time between 
TConNS and the other three algorithms when processing different number of tasks (n=20, 40, 60, 80, 100). 
The average response time of TConNS is about 49% lower compared to the other schemes
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dimension of information. The load condition corresponds to queuing time, CPU uti-
lization corresponds to processing time, network conditions correspond to commu-
nication delay, and mobility corresponds to propagation time. And, all of these time 
are related to energy consumption. TConNS covers most possible influencing factors, 
and the best cloudlet can be decided to achieve the goal of time saving and energy 
saving.

And, it can be found that each contextual factor has a different degree of influence 
on the selection of cloudlets and the offloading of tasks. Among them, the load is the 
most ‘prominent’ and has the greatest impact on the results. This is consistent with 
the weights of attributes calculated using the entropy weight method as shown in Eq. 
(16), and also indicates the effectiveness of the entropy weight method.

Fig. 7  Comparison of energy consumption. The figure shows the comparison of energy consumption 
between TConNS and the other three algorithms when processing different number of tasks (n=20, 40, 60, 
80, 100). The average energy consumption of TConNS is about 46% lower compared to the other schemes

Fig. 8  Comparison of the number of failed tasks with baselines. The figure shows the comparison of failed 
tasks between TConNS and the other four baselines when processing different number of tasks (n=20, 40, 60, 
80, 100)
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In summary, TConNS fully considers the four context attributes of cloudlet load, CPU 
utilization, network conditions and user mobility to select the best cloudlet from the 
global perspective, which is better than considering only the single-dimensional context 
method.

6 � Conclusion
In this paper, we investigated task offloading and edge server selection under mobile 
edge computing. A time-varying context-aware cloudlet decision framework based on 
the NS was proposed. Four context attributes with time-varying characteristics, includ-
ing load, CPU utilization, network conditions and mobile residence time, were con-
sidered for multi-attribute cloudlet decision making. The neutrosophic set is used to 

Fig. 9  Comparison of the response time with baselines. The figure shows the comparison of response time 
between TConNS and the other four baselines when processing different number of tasks (n=20, 40, 60, 80, 
100)

Fig. 10  Comparison of the energy consumption with baselines. The figure shows the comparison of energy 
consumption between TConNS and the other four baselines when processing different number of tasks 
(n=20, 40, 60, 80, 100)
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characterize the time-varying context, the SVNS model of context attributes is estab-
lished, and the optimal cloudlet is selected by the neutrosophic aggregation operation 
and neutrosophic score function. Simulation experimental results show that the pro-
posed strategy performs better in terms of the number of task failures, response time 
and energy consumption compared to other offloading scheme.

In future work, we will consider incorporating more scenario-tailored contextual 
attributes, as well as using deep learning methods to predict user trajectories to measure 
user mobility more accurately.
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