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1  Introduction
Massive MIMO has been studied as key enabling technology for 5G and future wire-
less systems because of significant gains in both spectral and energy efficiency [1–3]. In 
order to reap the full benefits of massive MIMO, acquiring the channel state informa-
tion (CSI) is crucial. In time division duplex (TDD) massive MIMO, the BS can estimate 
the CSI from mutually orthogonal uplink pilot sequences. In multi-cell multi-user mas-
sive MIMO systems, reusing of pilot sequences in adjacent cells is unavoidable because 
pilot resource is practically limited. Consequently, this reusing of pilot sequences brings 
about an inter-cell pilot interference termed as pilot contamination [4, 5].

Various methods have been investigated to mitigate the effect of pilot contamina-
tion. In [6], a time-shifted pilot assignment method was presented which involved 
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asynchronous transmission of pilot signals among adjacent cells. However, this may lead 
to mutual interference between data and pilot.

The schemes in [7, 8] used angle-of-arrival (AOA)-based methods and relied on the 
fact that geographically separated users with non-overlapping AOAs do not contami-
nate each other even if they employ the same pilot sequences. But the assumption that 
small AOA spread of each user is might not be always true as long as practical wire-
less systems are considered. The authors in [9] proposed a blind pilot decontamination 
technique based on subspace partitioning approach at the cost of a large computational 
complexity. A weighted graph-coloring-based pilot allocation scheme was proposed in 
[10] to mitigate pilot contamination for massive MIMO systems. The pilot assignment 
problem was modeled as a graph-coloring problem in which each node in the graph rep-
resents the user terminal. This pilot allocation scheme greedily assigns different pilots 
to graph-connected users starting from user terminals with the highest magnitude of 
pilot contamination. But it has limited performance in terms of convergence to the ideal 
optimal solution. In [11, 12], the low-complexity Tabu-search (TS) was proposed as a 
pilot assignment method in cellular massive MIMO and cell-free massive MIMO sys-
tems, respectively, and outperform the random pilot assignment and the greedy pilot 
assignment methods. Notwithstanding its low computational complexity, TS has limited 
performance when it comes to comparison with the ideal optimal solution.

A one-dimensional genetic algorithm was used as a pilot assignment method in mas-
sive MIMO systems as in [13] and showed improvement in performance compared with 
random pilot assignment, greedy pilot assignment, and TS pilot assignment methods. 
However, it requires many number of iterations to converge to the ideal optimal solu-
tion. The reason for that is because it stems from random initial population and did not 
take advantage of elitism strategy which happens to improve the performance of genetic 
algorithm.

In [14], a two-dimensional genetic algorithm was investigated for aircraft scheduling 
problem. Therein, a two-dimensional permutation encoding along with the implementa-
tion of two-dimensional crossover and mutation operations were devised. The authors 
pointed out that a two-dimensional encoding approach can reflect more geographical 
linkage of genes and might be suitable for problems with complex structures.

Motivated by [14], in this article, we propose a two-dimensional genetic algorithm 
(2D-GA) for pilot assignment problem in multi-cell massive MIMO systems. We have 
improved the genetic algorithm by adopting an elitism strategy in order to prevent the 
best chromosomes from the likelihood of being destroyed by the processes of crossover 
and mutation operations. Moreover, aiming to increase the likelihood of convergence 
to the ideal optimal solution, we have integrated the meta-heuristic optimization algo-
rithm known as Tabu-search (TS) for the purpose of generating the initial population of 
the two-dimensional genetic algorithm. To shed more light, we have made the following 
contributions.

•	 We have designed a 2D genetic algorithm tailored to the case of pilot assignment prob-
lem in massive MIMO systems. Also, we have employed an elitism strategy to prevent 
the best chromosomes from the likelihood of being destroyed by crossover and muta-
tion operations and hence improve the performance of the 2D genetic algorithm.
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•	 To enhance the convergence speed of the genetic algorithm to the ideal pilot assign-
ment solution, we have integrated a local-search optimization algorithm based on 
Tabu-Search as an initial population generator for the genetic algorithm.

Numerical simulation results confirm that, with few iterations, the performance of the 
proposed pilot assignment scheme is almost identical with the ideal optimal solution in 
terms of enhancing the uplink average rate per user.

The rest of the paper is organized as follows: Sect. 2 deals with the methodology which 
encompasses the model of massive MIMO system, achievable uplink (UL) rate, for-
mulation of the optimization problem and the proposed pilot allocation scheme. Sec-
tion 3 is dedicated to analyzing the computational complexity of the proposed scheme, 
and Sect. 4 focuses on the numerical simulation results and corresponding discussions. 
Finally, Sect. 5 concludes the paper.

2 � Methods
2.1 � System model

We consider a multi-cell, multi-user massive MIMO system with L cells operating 
in TDD mode, and the central BS in each cell is equipped with M antennas serving K 
( K ≪ M ) single-antenna users at the same time frequency resource. We assume that 
there are a maximum of K mutually orthogonal pilot sequences ( φ1,φ2, . . . φK  ) to be 
assigned to all KL users in the system. The length of each pilot sequence is considered to 
be one, and we assume that these pilot sequences are reused in all the L cells, but all the 
users in the same cell are allocated mutually orthogonal pilot sequences. The M-length 
channel vector between the kth user in jth cell and the BS in the ith cell can be described 
by [1–3].

where βi,j,k denotes the large-scale fading factor between the ith BS and the kth user in 
the jth cell as the result of shadow fading and path loss. It is user-dependent, but pre-
sumed constant over all M elements of the antenna array. The Symbol g ijk stands for the 
small scale fading vector of the corresponding user which follows a complex Gaussian 
distribution with zero mean vector and covariance matrix of IM. The large-scale fading 
coefficient between the kth user in the jth cell and the BS in the ith cell can be modeled 
as:

where zi,j,k is the shadow fading factor between the kth user in the jth and the BS in the 
ith cell which follows log-normal distribution with zero mean and standard deviation of 
δshad , di,j,k represent the distance of the kth user in the jth cell and the BS in the ith cell, 
and α represents the path loss coefficient. The model of a typical multi-cell, multi-user 
massive MIMO system is depicted in Fig. 1 [15].

In order for the BS to acquire the CSI of its serving users, it needs pilot sequences to 
be transmitted which are known symbols at both transmission and reception ends. In 

(1)hijk = g ijk βijk

(2)βijk =
zijk

(

dijk
)α
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the dedicated uplink training phase, all user terminals transmit their corresponding 
pilot sequences to the BSs. Since the same K orthogonal pilot sequences are reused in 
every cell, the CSI is corrupted by pilot contamination from neighboring cells.

2.2 � Achievable uplink rate

As investigated in [1–5, 10], when the number of antennas at the BS goes massive, the 
asymptotic SINR of the kth user in the ith cell can be formulated as:

Subsequently, the asymptotic uplink rate of the kth user in the ith cell is given as

Exploiting only the large-scale fading coefficients, the achievable uplink system 
sum-rate (bits/s/Hz) is given as

2.3 � Problem formulation

Given the available K mutually orthogonal pilot sequences ( φ1,φ2, . . . φK  ), there are a 
total of 

(

K !L−1
)

 possible ways of assigning these pilot sequences to all users in all cells 
[10]. Considering the total uplink achievable rate of the system as an optimization 
target, the allocation problem can be formulated as

(3)SINRik ≈
β2
iik

∑L
j �=iβ

2
ijk

(4)SEik = log2

(

1+
β2
iik

∑L
j �=iβ

2
ijk

)

(5)SEsum =
∑L

i=1

∑K

k=1
SEik

Fig. 1  Model of typical multi-cell, multi-user massive MIMO system
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where sik stands for the pilot sequence assigned to the kth user in the ith cell.

2.4 � Proposed pilot allocation scheme

The ideal optimal solution for the pilot assignment optimization problem in (6) is found 
by exhaustive-search mechanism which finds the global best pilot assignment set from 
all possible assignments exploiting brute-force approach, but it incurs huge cost of 
computational complexity for large-scale problem sizes. In this paper, we propose a 2D 
genetic algorithm integrated with Tabu-search (TS) to solve this optimization problem. 
Each scheme will be discussed separately, and the integration of the two will be finally 
illustrated in subsequent sections.

2.4.1 � Two‑dimensional genetic algorithm

We propose a two-dimensional genetic algorithm equipped with an elitism strategy as 
a principal solution to the pilot assignment problem. The two-dimension genetic algo-
rithm involves 2D permutation encoding, 2D crossover operation, and 2D mutation 
operation. Each chromosome embodies a possible pilot assignment solution and is rep-
resented as a matrix.

A.	 Two-dimensional chromosome encoding

Each chromosome is encoded using two-dimensional permutation encoding with L 
rows and K columns, where L is the number of cells in the system and K is the number 
of users per cell which is equal to the number of pilots available. The chromosome repre-
sentation for a system with L number of cells and K number of users is given as:

where c(x,y) stands for the gene located in row x and column y which represents the pilot 
assigned to the yth user in the xth cell. The population of the genetic algorithm now con-
tains N of such 2D chromosomes, N being the number of chromosomes. Befitting this 
two-dimensional permutation encoding, we adopted two-dimensional crossover and 
mutation operations as described in [14].

B.	 Evaluation mechanism and selection strategy

(6)

max
{sik }∈{φ1,φ2,... φK }

L
∑

i=1

∑K

k=1
SEik

= max{sik }∈{φ1,φ2,... φK }

L
∑

i=1

∑K

k=1
log2

(

1+
β2
iik

∑L
j �=i β

2
ijk

)

(7)




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


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
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To evaluate the fitness value of the population, we employed the sum of the uplink 
rate given in (5) as a fitness function. In every iteration of the genetic algorithm, a Rou-
lette Wheel selection strategy is adopted to generate N populations for the next genera-
tion. Moreover, we employed an elitism strategy in which the best 5% chromosomes are 
selected to be passed to the next generation unaltered using the sum-rate fitness func-
tion stipulated in (5). This elitism technique allows to prevent the best chromosomes 
from the likelihood of being destroyed by crossover and mutation operations.

C.	 Two-dimensional crossover

Crossover is the kernel of genetic algorithm in which two parent chromosomes are 
crossed to produce an offspring for next generation with some predefined crossover 
probability. Befitting the two-dimensional permutation encoding, we employed a two-
dimensional crossover technique which involves vertical and horizontal substring cross-
over operations.

D.	 Two-dimensional mutation

Mutation has a pivotal role in keeping the genetic diversity of the population of a 
genetic algorithm. Tailored to two-dimensional chromosome encoding, we applied hori-
zontal and vertical substring mutation which correspond to the exchange of entire rows 
and columns, respectively, according to a random number generator and predefined 
mutation probability.

2.4.2 � Tabu‑search (TS)

TS is a meta-heuristic optimization algorithm which is widely recognized as one of 
the most effective local-search strategies applicable to various optimization problems. 
It uses a local or neighborhood search procedure to iteratively move from one poten-
tial solution to an improved solution, until some stopping criterion has been satisfied. 
This algorithm starts out with an initial solution vector and finds a local neighborhood 
around it. The algorithm exploits what is called Tabu list to get away from being stuck in 
the local optimum. After the termination of the iteration, the best among the solution 
space in all the iterations is considered as a final historical best solution vector [11]. The 
algorithm has the following parameters.

Neighborhood definition considering the ith cell whose pilot assignment vector is 
si = {si1, si2 . . . siK }, sik ∈ {φ1,φ2, . . . φK} , the neighborhood of this pilot assignment vec-
tor is a set N (si) with predefined length K, the components of which are the exchange of 
any two elements of si.

Tabu list the algorithm records the solution vectors of the previous few iterations in 
a Tabu list, whose length is Ntabu, for the purpose of avoiding cycling. When the Tabu 
list is full, the new prohibited solution will push the first vector out of the list, and the 
pushed-out vector is free and added to the candidate again.

Stopping rule the search is stopped if the maximum number of iterations, I is reached.
Aspiration criterion for each search of the TS algorithm, the best state so far desig-

nated as b is defined to record the historical largest metric.



Page 7 of 14Gidena and Weldemichael ﻿J Wireless Com Network          (2024) 2024:5 	

where si* represents the corresponding historical optimal solution of the pilot assign-
ment vector of the ith cell, and f(.) is a sum-rate-based fitness function as given in (5), 
and S is a matrix which corresponds for the pilot assignment of all cells.

2.4.3 � Integrated pilot allocation scheme

In our work, we integrate TS algorithm with 2D genetic algorithm to solve the pilot 
assignment optimization problem. The purpose of the integration is to mitigate pilot 
contamination more significantly and to narrow out the performance gap with that of 
the ideal optimal pilot assignment solution. Here, the principal pilot assignment algo-
rithm is the two-dimensional genetic algorithm; TS is incorporated merely to gener-
ate the initial population for the genetic algorithm. We have used TS to produce an 
initial pilot assignment solution which will be employed as an initial population for 
the genetic algorithm. In doing so, the convergence speed of the genetic algorithm to 
the ideal optimal solution will be enhanced due to the fact that the genetic algorithm 
starts out from a potential initial population instead of random initial population. The 
detailed algorithmic steps and implementation flowchart of the proposed scheme are 
illustrated in algorithm 1 and Fig. 2, respectively.

(8)b = f
(

s|Si=si
∗

)

Fig. 2  Flowchart of the proposed scheme
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Algorithm 1  GATS-PA

3 � Complexity analysis
According to [11], the order of computational complexity of TS-PA is O(LK 3) . The order 
of computational complexity of the pilot assignment using 2D-GA can be estimated as 
O(NTLK ) . Therefore, the order of computational complexity of the proposed scheme is 
estimated to be O

(

NLK 3
)

+O(NTLK ) , where N is population size, and T is the num-
ber of iterations of the genetic algorithm. The computational complexity of all the pilot 
assignment algorithms is summarized in Table 1.

The computational complexity of RPA is negligible in relation to the other schemes. 
I fact, RPA has the lowest computational complexity of any possible pilot assignment 
that optimizes a given objective function. But it has the poorest performance in terms 
of mitigating pilot contamination. The exhaustive-search pilot assignment, EX-PA, per-
forms the best of all in mitigating pilot contamination but has an exponential order of 
complexity which makes it infeasible in practice. All but EX-PA has a polynomial order 
of complexity.

Table 1  Computational complexity

Algorithm Order of complexity

TS-PA O(LK3)

GATS-PA O
(

PLK
3
)

+O
(

PLK
2
)

, T = K

EX-PA O(K !L−1)
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Since the proposed scheme is an integration of TS-PA and 2D-GA, it stands to rea-
son that it has higher computational complexity than TS-PA and 2D-GA taken individu-
ally. But the proposed scheme outperforms both TS-PA and 2D-GA in mitigating pilot 
contamination. Moreover, in comparison with EX-PA, the computational complexity of 
the proposed scheme can be considered negligible. For instance, for L = 7 and K = 10 
massive MIMO system, the complexity of the proposed scheme with T = K iterations 
and N = 20 initial populations is 1.62 × 1034 times lower than that of EX-PA. So, the pro-
posed scheme is able to achieve an efficient trade-off between system performance and 
computational complexity.

4 � Numerical results
4.1 � Simulation setup

In this section, numerical simulation is conducted considering a typical massive MIMO 
system with L hexagonal cells and K single-antenna users uniformly distributed in their 
respective cells with a distance not less than 30m from BS. The radius of the cell is set 
to 500 m. The number of pilot sequences is equal to K, which is the number of users 
per cell. Accordingly, the loss of spectral efficiency due to uplink pilot transmission is 
set as μ0 = 0.05 [10]. The performance of the proposed pilot assignment scheme, GATS-
PA is compared with the following three existing pilot assignment schemes. Random 
pilot assignment (RPA), TS-based pilot assignment (TS-PA) and Exhaustive-search pilot 
assignment (EX-PA). The results are obtained by averaging from 2000 independent chan-
nel realizations. All the system parameters employed in this simulation are summarized 
in Table 2.

4.2 � Results and discussion

Figure  3 depicts the CDF of the average uplink rate for the four algorithms when 
L = 3, K = 5, and T = 1. Obviously, RPA performs lowest of all as it does not consider 
an optimization target. TS performs way better than RPA, but lower than the pro-
posed scheme. Specifically, when CDF reaches 0.5, the average uplink rates per user 
achieved by RPA, TS-PA, and GATS-PA are 9.82 bps/Hz, 10.55 bps/Hz, and 10.9 bps/

Table 2  System simulation parameters

Parameters Value

Number of cells, L 3, 4, 7

Number of BS antennas per cell, M 128

Number of users per cell, K 4, 5, 6

Log normal shadow fading, δshad 8 dB

Cell radius, R 500 m

Path loss exponent, α 3.8

Population size of GA, N 20

Number of iterations of GA, T K

Number of iterations of TS, I K

Mutation probability, pm 0.1

Crossover probability, pc 0.9

Loss of spectral efficiency factor, μ0 0.05
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Hz, respectively. The performance gap between RPA and TS is 0.73 bps/Hz and the 
performance gap between TS-PA and GATS-PA is 0.35 bps/Hz. As can be observed 
from the figure, the performance of the proposed scheme and that of the exhaustive-
search method is almost identical that it is difficult to tell them apart. This is because 
the 2D genetic algorithm starts out from a potential initial pilot assignment solution 
obtained by the TS algorithm. To shed more light, when CDF reaches 0.5, the perfor-
mance gap between GATS-PA and EX-PA is only 0.01 bps/Hz. This means with one 
iteration of the genetic algorithm, GATS-PA is almost identical to the ideal optimal 
solution and hence mitigates pilot contamination significantly.

Figure  4 demonstrates the CDF of average uplink rate per user achieved by three 
algorithms RPA, TS-PA, and GATS-PA, when the number of cells is increased to 7 
and the number of users is increased to 6. Overall, it can be observed that the average 
uplink rate achieved by all the schemes decreased due to the simultaneous increase 
in the number of users and cells, but the performance gap between RPA and the rest 
gets wider. Here, RPA performs the worst, and the proposed scheme performs the 
best. Particularly, when CDF is 0.5, RPA, TS-PA, and GATS-PA achieve 7.93 bps/Hz, 
8.85 bps/Hz, and 9.26 bps/Hz, respectively. In this case, the performance gap between 
TS-PA and RPA is 0.92 bps/Hz, and the performance gap between TS-PA and GATS-
PA is 0.41 bps/Hz.

Figure  5 depicts the significance of integrating TS algorithm with the 2D-GA in 
reducing the number of iterations to reach convergence for L = 3 and K = 4 massive 
MIMO system. As can be observed from the figure, if the 2D-GA-based pilot assign-
ment (equipped with elitism) starts off from random initial population, it reaches 
convergence to the ideal optimal solution after 30 iterations. On the other hand, when 
TS algorithm is leveraged as an initial population generator for the genetic algorithm, 
the number of iterations required by GATS-PA to reach convergence to the ideal opti-
mal solution is reduced to one. This is because in lieu of random initial population 

Fig. 3  CDF of average uplink rate per user with L = 3, K = 5, M = 128
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the genetic algorithm avails an enhanced initial population obtained by TS, and these 
enhanced initial pilot assignment solutions are preserved by the elitism strategy from 
the likelihood of being destroyed by the crossover and mutation operations.

Similarly, the convergence of the proposed scheme with L = 4, K = 4 massive MIMO 
system is depicted in Fig. 6. Even from the first iteration, the performance of the pro-
posed scheme is almost identical to the ideal optimal solution. In this case, the proposed 
scheme converges to the ideal optimal solution after 4 iterations. However, it has to 
be noted that as the problem size (as the number of cells and/or the number of users) 
increases, the number of iterations required by the proposed scheme to reach conver-
gence also increases.

Fig. 4  CDF of average uplink rate per user with L = 7, K = 6, M = 128

Fig. 5  Convergence analysis for L = 3, K = 4, M = 128
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The computational complexity can also be analyzed using CPU computation time 
in seconds. Accordingly, when L = 7, the CPU computation time for RPA, TS-PA and 
GATS-PA with respect to the variation in the number of users is illustrated in Fig. 7. 
The simulation is conducted using MATLAB R2018a installed in a personal computer 
with an Intel(R) Core™ i5 and Windows operating system. For GATS-PA, K iterations 
and N = 20 initial populations are utilized. From this figure, the CPU computation 
time required by RPA more or less stays constant irrespective of the increase in the 
number of users and is the lowest computation time. Although RPA achieves the low-
est CPU computation time, its performance in terms of mitigating pilot contamina-
tion is the poorest. For TS-PA and GATS-PA, the computation time increases with 

Fig. 6  Convergence analysis for L = 4, K = 4, M = 128

Fig. 7  CPU computation time comparison
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the increase in the number of users. As it can be observed the GATS-PA takes more 
CPU computation time in comparison with TS-PA. Although the CPU computation 
time of GATS is higher than that of TS-PA, its performance in terms of mitigating 
pilot contamination is better than TS-PA. Moreover, its computational complexity is 
far more negligible in comparison with the ideal optimal pilot assignment solution 
which have exponential order of complexity.

5 � Conclusion
In this paper, a new pilot assignment method designated as GATS-PA, which inte-
grates two-dimensional genetic algorithm with Tabu-search, has been proposed as 
a pilot assignment scheme to mitigate the pilot contamination problem in massive 
MIMO systems. Numerical simulation is conducted to assess the performance of the 
proposed scheme in relation to existing schemes. The simulation results and corre-
sponding performance analysis confirm that the proposed pilot assignment scheme 
enhances the uplink average rate per user and mitigates pilot contamination more 
significantly in comparison with existing methods. Moreover, with few number of 
iterations, the proposed scheme is found to be almost identical to the ideal optimal 
solution when the problem size is small.

Albeit negligible in comparison with that of the exhaustive-search method, the 
computational complexity of the proposed scheme is still considerable. In the future, 
while keeping the high performance achieved by the proposed scheme in enhancing 
the uplink average rate of users, improving the complexity of the genetic algorithm 
and/or the TS algorithm might be considered a plus in order to account for very large 
problem sizes.
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