Open Access

60-GHz Millimeter-Wave Radio: Principle, Technology, and New Results

EURASIP Journal on Wireless Communications and Networking20062007:068253

DOI: 10.1155/2007/68253

Received: 15 June 2006

Accepted: 14 September 2006

Published: 18 December 2006


The worldwide opening of a massive amount of unlicensed spectra around 60 GHz has triggered great interest in developing affordable 60-GHz radios. This interest has been catalyzed by recent advance of 60-GHz front-end technologies. This paper briefly reports recent work in the 60-GHz radio. Aspects addressed in this paper include global regulatory and standardization, justification of using the 60-GHz bands, 60-GHz consumer electronics applications, radio system concept, 60-GHz propagation and antennas, and key issues in system design. Some new simulation results are also given. Potentials and problems are explained in detail.


Authors’ Affiliations

Center for Manufacturing Research, Tennessee Technological University (TTU)
Department of Electrical and Computer Engineering, Tennessee Technological University (TTU)
Panasonic Princeton Laboratory (PPRL), Panasonic R&D Company of America
Network Development Center, Matsushita Electric Industrial Co., Ltd.


  1. Smulders P: Exploiting the 60 GHz band for local wireless multimedia access: prospects and future directions. IEEE Communications Magazine 2002,40(1):140-147. 10.1109/35.978061View ArticleGoogle Scholar
  2. Doan CH, Emami S, Sobel DA, Niknejad AM, Brodersen RW: Design considerations for 60 GHz CMOS radios. IEEE Communications Magazine 2004,42(12):132-140.View ArticleGoogle Scholar
  3. Daembkes H, Adelseck B, Schmidt LP, Schroth J: GaAs MMIC based components and frontends for millimeterwave communication and sensor systems. Proceedings of IEEE Microwave Systems Conference (NTC '95), May 1995, Orlando, Fla, USA 83-86.View ArticleGoogle Scholar
  4. Van Tuyl RL: Unlicensed millimeter wave communications a new opportunity for MMIC technology at 60 GHz. Proceedings of the 18th Annual IEEE Gallium Arsenide Integrated Circuit Symposium, November 1996, Orlando, Fla, USA 3-5.Google Scholar
  5. Siddiqui M, Quijije M, Lawrence A, et al.: GaAs components for 60 GHz wireless communication applications. Proceedings of GaAs Mantech Conference, April 2002, San Diego, Calif, USAGoogle Scholar
  6. Reynolds S, Floyd B, Pfeiffer U, Zwick T: 60 GHz transceiver circuits in SiGe bipolar technology. IEEE International Solid-State Circuits Conference. Digest of Technical Papers (ISSCC '04), February 2004, San Francisco, Calif, USA 1: 442-538.Google Scholar
  7. Doan CH, Emami S, Niknejad AM, Brodersen RW: Design of CMOS for 60 GHz applications. IEEE International Solid-State Circuits Conference. Digest of Technical Papers (ISSCC '04), February 2004, San Francisco, Calif, USA 1: 440-538.Google Scholar
  8. Winkler W, Borngräber J, Gustat H, Korndörfer F: 60 GHz transceiver circuits in SiGe:C BiCMOS technology. Proceedings of the 30th European Solid-State Circuits Conference (ESSCIRC '04), September 2004, Leuven, Belgium 83-86.View ArticleGoogle Scholar
  9. Reynolds SK: A 60-GHz superheterodyne downconversion mixer in Silicon-Germanium bipolar technology. IEEE Journal of Solid-State Circuits 2004,39(11):2065-2068.View ArticleGoogle Scholar
  10. Floyd BA, Reynolds SK, Pfeiffer UR, Zwick T, Beukema T, Gaucher B: SiGe bipolar transceiver circuits operating at 60 GHz. IEEE Journal of Solid-State Circuits 2005,40(1):156-167.View ArticleGoogle Scholar
  11. Deparis N, Bendjabballah A, Boe A, et al.: Transposition of a baseband UWB signal at 60 GHz for high data rate indoor WLAN. IEEE Microwave and Wireless Components Letters 2005,15(10):609-611.View ArticleGoogle Scholar
  12. Gunnarsson SE, Kärnfelt C, Zirath H, et al.: Highly integrated 60 GHz transmitter and receiver MMICs in a GaAs pHEMT technology. IEEE Journal of Solid-State Circuits 2005,40(11):2174-2185.View ArticleGoogle Scholar
  13. Pinel S, Lee C-H, Sarkar S, et al.: Low cost 60 GHz Gb/s radio development. Progress in Electromagnetics Research Symposium, March 2006, Cambridge, Mass, USA 483-484.Google Scholar
  14. Sarkar S, Sen P, Pinel S, Lee CH, Laskar J: Si-based 60GHz 2X subharmonic mixer for multi-Gigabit wireless personal area network application. Proceedings of IEEE MTT-S International Microwave Symposium, June 2006, San Francisco, Calif, USAGoogle Scholar
  15. Moore SK: Cheap chips for next wireless frontier. IEEE Spectrum 2006, 43: 12-13.View ArticleGoogle Scholar
  16. Gaucher B: Completely integrated 60 GHz ISM band front end chip set and test results. IEEE 802.15 TG3c document: 15-06-0003-00-003c, January 2006.Google Scholar
  17. IEEE 802.15 Working Group for WPAN,
  18. WiMedia alliance,
  19. Scholtz R: Multiple access with time-hopping impulse modulation. Proceedings of IEEE Military Communications Conference (MILCOM '93), October 1993, Boston, Mass, USA 2: 447-450.View ArticleGoogle Scholar
  20. Win MZ, Scholtz RA: Ultra-wide bandwidth time-hopping spread-spectrum impulse radio for wireless multiple-access communications. IEEE Transactions on Communications 2000,48(4):679-689. 10.1109/26.843135View ArticleGoogle Scholar
  21. Qiu RC, Liu H, Shen X: Ultra-wideband for multiple access communications. IEEE Communications Magazine 2005,43(2):80-87.View ArticleGoogle Scholar
  22. Qiu RC, Scholtz RA, Shen X: Guest editorial special section on ultra-wideband wireless communications—a new horizon. IEEE Transactions on Vehicular Technology 2005,54(5):1525-1527. 10.1109/TVT.2005.857567View ArticleGoogle Scholar
  23. Shen X, Guizani M, Chen H-H, Qiu RC, Molisch AF, Milstein LB: Guest editorial ultra-wideband wireless communications—theory and applications. IEEE Journal on Selected Areas in Communications 2006,24(4):713-716. editorial on special issue on UWView ArticleGoogle Scholar
  24. Qiu RC, Shen X, Guizani M, Le-Ngoc T: Introduction. In UWB Wireless Communications. Edited by: Shen X, Guizani M, Qiu RC, Le-Ngoc T. John Wiley & Sons, New York, NY, USA; 2006.Google Scholar
  25. Sadri A: 802.15.3c Usage Model Document (UMD), Draft. IEEE 802.15 TG3c document: 15-06-0055-14-003c, January 2006.Google Scholar
  26. Park J, Wang Y, Itoh T: A 60 GHz integrated antenna array for high-speed digital beamforming applications.
  27. Hajimiri A, Komijani A, Natarajan A, Chunara R, Guan X, Hashemi H: Phased array systems in silicon. IEEE Communications Magazine 2004,42(8):122-130.View ArticleGoogle Scholar
  28. Guan X, Hashemi H, Hajimiri A: A fully integratted 24-GHz eight-element phased-array receiver in silicon. IEEE Journal of Solid-State Circuits 2004,39(12):2311-2320.View ArticleGoogle Scholar
  29. Hashemi H, Guan X, Komijani A, Hajimiri A: A 24-GHz SiGe phased-array receiver - LO phase-shifting approach. IEEE Transactions on Microwave Theory and Techniques 2005,53(2):614-626.View ArticleGoogle Scholar
  30. Natarajan A, Komijani A, Hajimiri A: A fully integrated 24-GHz phased-array transmitter in CMOS. IEEE Journal of Solid-State Circuits 2005,40(12):2502-2514.View ArticleGoogle Scholar
  31. Williamson MR, Athanasiadou GE, Nix AR: Investigating the effects of antenna directivity on wireless indoor communication at 6O GHz. Proceedings of the 8th IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC '97), September 1997, Helsinki, Finland 2: 635-639.View ArticleGoogle Scholar
  32. Dardari D, Tralli V: High-speed indoor wireless communications at 60 GHz with coded OFDM. IEEE Transactions on Communications 1999,47(11):1709-1721. 10.1109/26.803506View ArticleGoogle Scholar
  33. Xu H, Kukshya V, Rappaport TS: Spatial and temporal characteristics of 60-GHZ indoor channels. IEEE Journal on Selected Areas in Communications 2002,20(3):620-630. 10.1109/49.995521View ArticleGoogle Scholar
  34. Siamarou AG: Broadband wireless local-area networks at millimeter waves around 60 GHz. IEEE Antennas and Propagation Magazine 2003,45(1):177-181. 10.1109/MAP.2003.1189665View ArticleGoogle Scholar
  35. Anderson CR, Rappaport TS: In-building wideband partition loss measurements at 2.5 and 60 GHz. IEEE Transactions on Wireless Communications 2004,3(3):922-928. 10.1109/TWC.2004.826328View ArticleGoogle Scholar
  36. Aryanfar F, Sarabandi K: A millimeter-wave scaled measurement system for wireless channel characterization. IEEE Transactions on Microwave Theory and Techniques 2004,52(6):1663-1670. 10.1109/TMTT.2004.828471View ArticleGoogle Scholar
  37. Collonge S, Zaharia G, El Zein G: Influence of the human activity on wide-band characteristics of the 60 GHz indoor radio channel. IEEE Transactions on Wireless Communications 2004,3(6):2396-2406. 10.1109/TWC.2004.837276View ArticleGoogle Scholar
  38. Moraitis N, Constantinou P: Indoor channel measurements and characterization at 60 GHz for wireless local area network applications. IEEE Transactions on Antennas and Propagation 2004,52(12):3180-3189. 10.1109/TAP.2004.836422View ArticleGoogle Scholar
  39. Zwick T, Beukema TJ, Nam H: Wideband channel sounder with measurements and model for the 60 GHz indoor radio channel. IEEE Transactions on Vehicular Technology 2005,54(4):1266-1277. 10.1109/TVT.2005.851354View ArticleGoogle Scholar
  40. Mathew A: Channel model status report. IEEE 802.15 TG3c document: IEEE 802.15-06/0037r2, May 2006.Google Scholar
  41. Smulders PFM, Herben MHAJ, George J: Application of five-sector beam antenna for 60 GHz wireless LAN.
  42. Ramanathan R, Redi J, Santivanez C, Wiggins D, Polit S: Ad hoc networking with directional antennas: a complete system solution. IEEE Journal on Selected Areas in Communications 2005,23(3):496-506.View ArticleGoogle Scholar
  43. Dai F, Wu J: Efficient broadcasting in ad hoc wireless networks using directional antennas. IEEE Transactions on Parallel and Distributed Systems 2006,17(4):335-347.View ArticleGoogle Scholar
  44. Pollet T, Van Bladel M, Moeneclaey M: BER sensitivity of OFDM systems to carrier frequency offset and Wiener phase noise. IEEE Transactions on Communications 1995,43(234):191-193.View ArticleGoogle Scholar
  45. Weisenhorn M, Hirt W: Uncoordinated rate-division multiple-access scheme for pulsed UWB signals. IEEE Transactions on Vehicular Technology 2005,54(5):1646-1662. 10.1109/TVT.2005.853980View ArticleGoogle Scholar
  46. Davis DH, Gronemeyer SA: Performance of slotted ALOHA random access with delay capture and randomized time of arrival. IEEE Transactions on Communications Systems 1980,28(5):703-710. 10.1109/TCOM.1980.1094718View ArticleMATHGoogle Scholar
  47. Cheun K: Optimum arrival-time distribution for delay capture in spread-spectrum packet radio networks. IEEE Transactions on Vehicular Technology 1997,46(4):981-991. 10.1109/25.653072View ArticleGoogle Scholar
  48. Guo N, Qiu RC, Sadler BM: A UWB radio network using multiple delay capture enabled by time reversal. Proceedings of Military Communications Conference (MILCOM '06), October 2006, Washington, DC, USAGoogle Scholar


© Nan Guo et al. 2007

This article is published under license to BioMed Central Ltd. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.